Do you want to publish a course? Click here

PyEuroVoc: A Tool for Multilingual Legal Document Classification with EuroVoc Descriptors

Pyeurovoc: أداة لتصنيف المستندات القانونية متعددة اللغات مع واصفات Eurovoc

337   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

EuroVoc is a multilingual thesaurus that was built for organizing the legislative documentary of the European Union institutions. It contains thousands of categories at different levels of specificity and its descriptors are targeted by legal texts in almost thirty languages. In this work we propose a unified framework for EuroVoc classification on 22 languages by fine-tuning modern Transformer-based pretrained language models. We study extensively the performance of our trained models and show that they significantly improve the results obtained by a similar tool - JEX - on the same dataset. The code and the fine-tuned models were open sourced, together with a programmatic interface that eases the process of loading the weights of a trained model and of classifying a new document.



References used
https://aclanthology.org/
rate research

Read More

Multi-label document classification (MLDC) problems can be challenging, especially for long documents with a large label set and a long-tail distribution over labels. In this paper, we present an effective convolutional attention network for the MLDC problem with a focus on medical code prediction from clinical documents. Our innovations are three-fold: (1) we utilize a deep convolution-based encoder with the squeeze-and-excitation networks and residual networks to aggregate the information across the document and learn meaningful document representations that cover different ranges of texts; (2) we explore multi-layer and sum-pooling attention to extract the most informative features from these multi-scale representations; (3) we combine binary cross entropy loss and focal loss to improve performance for rare labels. We focus our evaluation study on MIMIC-III, a widely used dataset in the medical domain. Our models outperform prior work on medical coding and achieve new state-of-the-art results on multiple metrics. We also demonstrate the language independent nature of our approach by applying it to two non-English datasets. Our model outperforms prior best model and a multilingual Transformer model by a substantial margin.
Bidirectional Encoder Representations from Transformers (BERT) has achieved state-of-the-art performances on several text classification tasks, such as GLUE and sentiment analysis. Recent work in the legal domain started to use BERT on tasks, such as legal judgement prediction and violation prediction. A common practise in using BERT is to fine-tune a pre-trained model on a target task and truncate the input texts to the size of the BERT input (e.g. at most 512 tokens). However, due to the unique characteristics of legal documents, it is not clear how to effectively adapt BERT in the legal domain. In this work, we investigate how to deal with long documents, and how is the importance of pre-training on documents from the same domain as the target task. We conduct experiments on the two recent datasets: ECHR Violation Dataset and the Overruling Task Dataset, which are multi-label and binary classification tasks, respectively. Importantly, on average the number of tokens in a document from the ECHR Violation Dataset is more than 1,600. While the documents in the Overruling Task Dataset are shorter (the maximum number of tokens is 204). We thoroughly compare several techniques for adapting BERT on long documents and compare different models pre-trained on the legal and other domains. Our experimental results show that we need to explicitly adapt BERT to handle long documents, as the truncation leads to less effective performance. We also found that pre-training on the documents that are similar to the target task would result in more effective performance on several scenario.
We introduce MULTI-EURLEX, a new multilingual dataset for topic classification of legal documents. The dataset comprises 65k European Union (EU) laws, officially translated in 23 languages, annotated with multiple labels from the EUROVOC taxonomy. We highlight the effect of temporal concept drift and the importance of chronological, instead of random splits. We use the dataset as a testbed for zero-shot cross-lingual transfer, where we exploit annotated training documents in one language (source) to classify documents in another language (target). We find that fine-tuning a multilingually pretrained model (XLM-ROBERTA, MT5) in a single source language leads to catastrophic forgetting of multilingual knowledge and, consequently, poor zero-shot transfer to other languages. Adaptation strategies, namely partial fine-tuning, adapters, BITFIT, LNFIT, originally proposed to accelerate fine-tuning for new end-tasks, help retain multilingual knowledge from pretraining, substantially improving zero-shot cross-lingual transfer, but their impact also depends on the pretrained model used and the size of the label set.
Multi-label document classification, associating one document instance with a set of relevant labels, is attracting more and more research attention. Existing methods explore the incorporation of information beyond text, such as document metadata or label structure. These approaches however either simply utilize the semantic information of metadata or employ the predefined parent-child label hierarchy, ignoring the heterogeneous graphical structures of metadata and labels, which we believe are crucial for accurate multi-label document classification. Therefore, in this paper, we propose a novel neural network based approach for multi-label document classification, in which two heterogeneous graphs are constructed and learned using heterogeneous graph transformers. One is metadata heterogeneous graph, which models various types of metadata and their topological relations. The other is label heterogeneous graph, which is constructed based on both the labels' hierarchy and their statistical dependencies. Experimental results on two benchmark datasets show the proposed approach outperforms several state-of-the-art baselines.
ActiveAnno is an annotation tool focused on document-level annotation tasks developed both for industry and research settings. It is designed to be a general-purpose tool with a wide variety of use cases. It features a modern and responsive web UI fo r creating annotation projects, conducting annotations, adjudicating disagreements, and analyzing annotation results. ActiveAnno embeds a highly configurable and interactive user interface. The tool also integrates a RESTful API that enables integration into other software systems, including an API for machine learning integration. ActiveAnno is built with extensible design and easy deployment in mind, all to enable users to perform annotation tasks with high efficiency and high-quality annotation results.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا