Do you want to publish a course? Click here

Efficiently Summarizing Text and Graph Encodings of Multi-Document Clusters

تلخيص النص وترفيحات الرسوم البيانية بكفاءة من مجموعات متعددة الوثائق

226   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper presents an efficient graph-enhanced approach to multi-document summarization (MDS) with an encoder-decoder Transformer model. This model is based on recent advances in pre-training both encoder and decoder on very large text data (Lewis et al., 2019), and it incorporates an efficient encoding mechanism (Beltagy et al., 2020) that avoids the quadratic memory growth typical for traditional Transformers. We show that this powerful combination not only scales to large input documents commonly found when summarizing news clusters; it also enables us to process additional input in the form of auxiliary graph representations, which we derive from the multi-document clusters. We present a mechanism to incorporate such graph information into the encoder-decoder model that was pre-trained on text only. Our approach leads to significant improvements on the Multi-News dataset, overall leading to an average 1.8 ROUGE score improvement over previous work (Li et al., 2020). We also show improvements in a transfer-only setup on the DUC-2004 dataset. The graph encodings lead to summaries that are more abstractive. Human evaluation shows that they are also more informative and factually more consistent with their input documents.



References used
https://aclanthology.org/
rate research

Read More

Multi-label document classification, associating one document instance with a set of relevant labels, is attracting more and more research attention. Existing methods explore the incorporation of information beyond text, such as document metadata or label structure. These approaches however either simply utilize the semantic information of metadata or employ the predefined parent-child label hierarchy, ignoring the heterogeneous graphical structures of metadata and labels, which we believe are crucial for accurate multi-label document classification. Therefore, in this paper, we propose a novel neural network based approach for multi-label document classification, in which two heterogeneous graphs are constructed and learned using heterogeneous graph transformers. One is metadata heterogeneous graph, which models various types of metadata and their topological relations. The other is label heterogeneous graph, which is constructed based on both the labels' hierarchy and their statistical dependencies. Experimental results on two benchmark datasets show the proposed approach outperforms several state-of-the-art baselines.
Information overload has been one of the challenges regarding information from the Internet. It is not a matter of information access, instead, the focus had shifted towards the quality of the retrieved data. Particularly in the news domain, multiple outlets report on the same news events but may differ in details. This work considers that different news outlets are more likely to differ in their writing styles and the choice of words, and proposes a method to extract sentences based on their key information by focusing on the shared synonyms in each sentence. Our method also attempts to reduce redundancy through hierarchical clustering and arrange selected sentences on the proposed orderBERT. The results show that the proposed unsupervised framework successfully improves the coverage, coherence, and, meanwhile, reduces the redundancy for a generated summary. Moreover, due to the process of obtaining the dataset, we also propose a data refinement method to alleviate the problems of undesirable texts, which result from the process of automatic scraping.
Allowing users to interact with multi-document summarizers is a promising direction towards improving and customizing summary results. Different ideas for interactive summarization have been proposed in previous work but these solutions are highly di vergent and incomparable. In this paper, we develop an end-to-end evaluation framework for interactive summarization, focusing on expansion-based interaction, which considers the accumulating information along a user session. Our framework includes a procedure of collecting real user sessions, as well as evaluation measures relying on summarization standards, but adapted to reflect interaction. All of our solutions and resources are available publicly as a benchmark, allowing comparison of future developments in interactive summarization, and spurring progress in its methodological evaluation. We demonstrate the use of our framework by evaluating and comparing baseline implementations that we developed for this purpose, which will serve as part of our benchmark. Our extensive experimentation and analysis motivate the proposed evaluation framework design and support its viability.
We present a method for generating comparative summaries that highlight similarities and contradictions in input documents. The key challenge in creating such summaries is the lack of large parallel training data required for training typical summari zation systems. To this end, we introduce a hybrid generation approach inspired by traditional concept-to-text systems. To enable accurate comparison between different sources, the model first learns to extract pertinent relations from input documents. The content planning component uses deterministic operators to aggregate these relations after identifying a subset for inclusion into a summary. The surface realization component lexicalizes this information using a text-infilling language model. By separately modeling content selection and realization, we can effectively train them with limited annotations. We implemented and tested the model in the domain of nutrition and health -- rife with inconsistencies. Compared to conventional methods, our framework leads to more faithful, relevant and aggregation-sensitive summarization -- while being equally fluent.
We present Graformer, a novel Transformer-based encoder-decoder architecture for graph-to-text generation. With our novel graph self-attention, the encoding of a node relies on all nodes in the input graph - not only direct neighbors - facilitating t he detection of global patterns. We represent the relation between two nodes as the length of the shortest path between them. Graformer learns to weight these node-node relations differently for different attention heads, thus virtually learning differently connected views of the input graph. We evaluate Graformer on two popular graph-to-text generation benchmarks, AGENDA and WebNLG, where it achieves strong performance while using many fewer parameters than other approaches.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا