Do you want to publish a course? Click here

Unsupervised Multi-document Summarization for News Corpus with Key Synonyms and Contextual Embeddings

تلخيص المستندات متعددة الوثائق غير الخاضعة للإخبارية

453   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Information overload has been one of the challenges regarding information from the Internet. It is not a matter of information access, instead, the focus had shifted towards the quality of the retrieved data. Particularly in the news domain, multiple outlets report on the same news events but may differ in details. This work considers that different news outlets are more likely to differ in their writing styles and the choice of words, and proposes a method to extract sentences based on their key information by focusing on the shared synonyms in each sentence. Our method also attempts to reduce redundancy through hierarchical clustering and arrange selected sentences on the proposed orderBERT. The results show that the proposed unsupervised framework successfully improves the coverage, coherence, and, meanwhile, reduces the redundancy for a generated summary. Moreover, due to the process of obtaining the dataset, we also propose a data refinement method to alleviate the problems of undesirable texts, which result from the process of automatic scraping.



References used
https://aclanthology.org/
rate research

Read More

Allowing users to interact with multi-document summarizers is a promising direction towards improving and customizing summary results. Different ideas for interactive summarization have been proposed in previous work but these solutions are highly di vergent and incomparable. In this paper, we develop an end-to-end evaluation framework for interactive summarization, focusing on expansion-based interaction, which considers the accumulating information along a user session. Our framework includes a procedure of collecting real user sessions, as well as evaluation measures relying on summarization standards, but adapted to reflect interaction. All of our solutions and resources are available publicly as a benchmark, allowing comparison of future developments in interactive summarization, and spurring progress in its methodological evaluation. We demonstrate the use of our framework by evaluating and comparing baseline implementations that we developed for this purpose, which will serve as part of our benchmark. Our extensive experimentation and analysis motivate the proposed evaluation framework design and support its viability.
This paper describes our submission for the LongSumm task in SDP 2021. We propose a method for incorporating sentence embeddings produced by deep language models into extractive summarization techniques based on graph centrality in an unsupervised ma nner.The proposed method is simple, fast, can summarize any kind of document of any size and can satisfy any length constraints for the summaries produced. The method offers competitive performance to more sophisticated supervised methods and can serve as a proxy for abstractive summarization techniques
We present a method for generating comparative summaries that highlight similarities and contradictions in input documents. The key challenge in creating such summaries is the lack of large parallel training data required for training typical summari zation systems. To this end, we introduce a hybrid generation approach inspired by traditional concept-to-text systems. To enable accurate comparison between different sources, the model first learns to extract pertinent relations from input documents. The content planning component uses deterministic operators to aggregate these relations after identifying a subset for inclusion into a summary. The surface realization component lexicalizes this information using a text-infilling language model. By separately modeling content selection and realization, we can effectively train them with limited annotations. We implemented and tested the model in the domain of nutrition and health -- rife with inconsistencies. Compared to conventional methods, our framework leads to more faithful, relevant and aggregation-sensitive summarization -- while being equally fluent.
A crucial difference between single- and multi-document summarization is how salient content manifests itself in the document(s). While such content may appear at the beginning of a single document, essential information is frequently reiterated in a set of documents related to a particular topic, resulting in an endorsement effect that increases information salience. In this paper, we model the cross-document endorsement effect and its utilization in multiple document summarization. Our method generates a synopsis from each document, which serves as an endorser to identify salient content from other documents. Strongly endorsed text segments are used to enrich a neural encoder-decoder model to consolidate them into an abstractive summary. The method has a great potential to learn from fewer examples to identify salient content, which alleviates the need for costly retraining when the set of documents is dynamically adjusted. Through extensive experiments on benchmark multi-document summarization datasets, we demonstrate the effectiveness of our proposed method over strong published baselines. Finally, we shed light on future research directions and discuss broader challenges of this task using a case study.
Most of existing extractive multi-document summarization (MDS) methods score each sentence individually and extract salient sentences one by one to compose a summary, which have two main drawbacks: (1) neglecting both the intra and cross-document rel ations between sentences; (2) neglecting the coherence and conciseness of the whole summary. In this paper, we propose a novel MDS framework (SgSum) to formulate the MDS task as a sub-graph selection problem, in which source documents are regarded as a relation graph of sentences (e.g., similarity graph or discourse graph) and the candidate summaries are its sub-graphs. Instead of selecting salient sentences, SgSum selects a salient sub-graph from the relation graph as the summary. Comparing with traditional methods, our method has two main advantages: (1) the relations between sentences are captured by modeling both the graph structure of the whole document set and the candidate sub-graphs; (2) directly outputs an integrate summary in the form of sub-graph which is more informative and coherent. Extensive experiments on MultiNews and DUC datasets show that our proposed method brings substantial improvements over several strong baselines. Human evaluation results also demonstrate that our model can produce significantly more coherent and informative summaries compared with traditional MDS methods. Moreover, the proposed architecture has strong transfer ability from single to multi-document input, which can reduce the resource bottleneck in MDS tasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا