تهدف نقل نمط النص إلى توليد نص محكم مع التغييرات الأسلوبية المستهدفة مع الحفاظ على المعنى الأساسي من ثابت الجملة. تركز العديد من معايير نقل النمط الموجودة في المقام الأول على التغييرات الدلالية الفردية الفردية (E.G. إيجابية إلى سلبية)، والتي تمكن من إمكانية التحكم في مستوى عال ولكنها لا تقدم تحكما بخير ينطوي على هيكل جملة، والتركيز ومضمون الجملة. في هذه الورقة، نقدم معيارا واسع النطاق، StyleptB، مع (1) جمل مقترنة تخضع 21 تغييرات أسلوبية حبيبة على غرامة تمتد عبر التحويلات المعجمية البسيطة والمعدة والدلية والمواورة، وكذلك (2) تركيبات متعددة التحويلات التي تسمح نمذجة التغييرات الأسلالية المحتلة الجميلة كقوانيات لتحويل أكثر تعقيدا رفيعة المستوى. بقياس الأساليب الحالية على StyleptB، نجد أنهم يكافحون من أجل تغييرات التغييرات الدقيقة والحصول على وقت أكثر صعوبة في تكوين أنماط متعددة. ونتيجة لذلك، فإن StyleptB يجلب تحديات جديدة نأمل أن يشجع البحث في المستقبل في نقل أسلوب نصي يمكن السيطرة عليها ونماذج تركيبية وتعلم تمثيلات DESENTANGLED. سيقدم حل هذه التحديات خطوات مهمة نحو جيل نص قابل للتحكم.
Text style transfer aims to controllably generate text with targeted stylistic changes while maintaining core meaning from the source sentence constant. Many of the existing style transfer benchmarks primarily focus on individual high-level semantic changes (e.g. positive to negative), which enable controllability at a high level but do not offer fine-grained control involving sentence structure, emphasis, and content of the sentence. In this paper, we introduce a large-scale benchmark, StylePTB, with (1) paired sentences undergoing 21 fine-grained stylistic changes spanning atomic lexical, syntactic, semantic, and thematic transfers of text, as well as (2) compositions of multiple transfers which allow modeling of fine-grained stylistic changes as building blocks for more complex, high-level transfers. By benchmarking existing methods on StylePTB, we find that they struggle to model fine-grained changes and have an even more difficult time composing multiple styles. As a result, StylePTB brings novel challenges that we hope will encourage future research in controllable text style transfer, compositional models, and learning disentangled representations. Solving these challenges would present important steps towards controllable text generation.
References used
https://aclanthology.org/
We take the first step towards multilingual style transfer by creating and releasing XFORMAL, a benchmark of multiple formal reformulations of informal text in Brazilian Portuguese, French, and Italian. Results on XFORMAL suggest that state-of-the-ar
Unsupervised style transfer models are mainly based on an inductive learning approach, which represents the style as embeddings, decoder parameters, or discriminator parameters and directly applies these general rules to the test cases. However, the
Learning a good latent representation is essential for text style transfer, which generates a new sentence by changing the attributes of a given sentence while preserving its content. Most previous works adopt disentangled latent representation learn
Text style transfer involves rewriting the content of a source sentence in a target style. Despite there being a number of style tasks with available data, there has been limited systematic discussion of how text style datasets relate to each other.
In most cases, the lack of parallel corpora makes it impossible to directly train supervised models for the text style transfer task. In this paper, we explore training algorithms that instead optimize reward functions that explicitly consider differ