في معظم الحالات، فإن الافتقار إلى Corpora الموازي يجعل من المستحيل مباشرة على تدريب النماذج الخاضعة للإشراف لمهمة نقل نمط النص.في هذه الورقة، نستكشف خوارزميات التدريب التي تقوم بدلا من ذلك تحسين وظائف المكافآت التي تنظر صراحة في جوانب مختلفة من النواتج التي يتم تحويلها بالسليب.على وجه الخصوص، نحن نستفيد مقاييس التشابه الدلالي المستخدمة في الأصل لنماذج الترجمة الآلية العصبية بشكل جيد لتقييم الحفاظ على المحتوى بشكل صريح بين مخرجات النظام ونصوص الإدخال.نحقق أيضا في نقاط الضعف المحتملة للمقاييس التلقائية الحالية واقتراح استراتيجيات فعالة لاستخدام هذه المقاييس للتدريب.تظهر النتائج التجريبية أن طرازنا يوفر مكاسب كبيرة في كل من التقييم التلقائي والإنساني على أساس الأساس القوي، مما يشير إلى فعالية أساليبنا المقترحة واستراتيجيات التدريب.
In most cases, the lack of parallel corpora makes it impossible to directly train supervised models for the text style transfer task. In this paper, we explore training algorithms that instead optimize reward functions that explicitly consider different aspects of the style-transferred outputs. In particular, we leverage semantic similarity metrics originally used for fine-tuning neural machine translation models to explicitly assess the preservation of content between system outputs and input texts. We also investigate the potential weaknesses of the existing automatic metrics and propose efficient strategies of using these metrics for training. The experimental results show that our model provides significant gains in both automatic and human evaluation over strong baselines, indicating the effectiveness of our proposed methods and training strategies.
References used
https://aclanthology.org/
Learning a good latent representation is essential for text style transfer, which generates a new sentence by changing the attributes of a given sentence while preserving its content. Most previous works adopt disentangled latent representation learn
Text style transfer involves rewriting the content of a source sentence in a target style. Despite there being a number of style tasks with available data, there has been limited systematic discussion of how text style datasets relate to each other.
The style transfer task (here style is used in a broad authorial'' sense with many aspects including register, sentence structure, and vocabulary choice) takes text input and rewrites it in a specified target style preserving the meaning, but alterin
Unsupervised style transfer models are mainly based on an inductive learning approach, which represents the style as embeddings, decoder parameters, or discriminator parameters and directly applies these general rules to the test cases. However, the
Existing text style transfer (TST) methods rely on style classifiers to disentangle the text's content and style attributes for text style transfer. While the style classifier plays a critical role in existing TST methods, there is no known investiga