إن التنبؤ بإجابة سؤال متعلقة بالمنتج هو مجال ناشئ من البحوث وجذب مؤخرا الكثير من الاهتمام. الإجابة على الأسئلة الذاتية والقائمة على الرأي هي الأكثر تحديا بسبب الاعتماد على المحتوى الذي تم إنشاؤه العملاء. يعمل السابق في الغالب على التنبؤ بالإجابة على مراجعة الاستعراض؛ ومع ذلك، فإن هذه الأساليب تفشل في منتجات جديدة أو غير شعبية، بعد مراجعات (أو قليلة فقط) في متناول اليد. في هذا العمل، نقترح نهج رواية ومكملة للتنبؤ بإجابة هذه الأسئلة، بناء على إجابات أسئلة مماثلة تم طرحها على منتجات مماثلة. نقيس التشابه السياقي بين المنتجات بناء على الإجابات التي توفرها لنفس السؤال. يستخدم إطار خبير في الخبراء للتنبؤ بالإجابة عن طريق تجميع الإجابات من المنتجات المماثلة للسياق. توضح النتائج التجريبية أن نموذجنا يتفوق على خطوط أساسية قوية في بعض شرائح الأسئلة، أي تلك التي لها ما يقرب من عشرة أسئلة واحدة أو أكثر مماثلة في الجور. بالإضافة إلى ذلك نشر مجموعات بيانات واسعة النطاق المستخدمة في هذا العمل، أحد أزواج أسئلة مماثلة، والثاني هو أزواج الإجابة على الأسئلة.
Predicting the answer to a product-related question is an emerging field of research that recently attracted a lot of attention. Answering subjective and opinion-based questions is most challenging due to the dependency on customer generated content. Previous works mostly focused on review-aware answer prediction; however, these approaches fail for new or unpopular products, having no (or only a few) reviews at hand. In this work, we propose a novel and complementary approach for predicting the answer for such questions, based on the answers for similar questions asked on similar products. We measure the contextual similarity between products based on the answers they provide for the same question. A mixture-of-expert framework is used to predict the answer by aggregating the answers from contextually similar products. Empirical results demonstrate that our model outperforms strong baselines on some segments of questions, namely those that have roughly ten or more similar resolved questions in the corpus. We additionally publish two large-scale datasets used in this work, one is of similar product question pairs, and the second is of product question-answer pairs.
References used
https://aclanthology.org/
We develop a unified system to answer directly from text open-domain questions that may require a varying number of retrieval steps. We employ a single multi-task transformer model to perform all the necessary subtasks---retrieving supporting facts,
In this paper, we show that automatically-generated questions and answers can be used to evaluate the quality of Machine Translation (MT) systems. Building on recent work on the evaluation of abstractive text summarization, we propose a new metric for system-level MT evaluation, compare it with other state-of-the-art solutions, and show its robustness by conducting experiments for various MT directions.
In this paper, we define and evaluate a methodology for extracting history-dependent spatial questions from visual dialogues. We say that a question is history-dependent if it requires (parts of) its dialogue history to be interpreted. We argue that
There has been a significant progress in the field of Extractive Question Answering (EQA) in the recent years. However, most of them are reliant on annotations of answer-spans in the corresponding passages. In this work, we address the problem of EQA
Machine reading comprehension (MRC) is one of the most challenging tasks in natural language processing domain. Recent state-of-the-art results for MRC have been achieved with the pre-trained language models, such as BERT and its modifications. Despi