Do you want to publish a course? Click here

Answering Open-Domain Questions of Varying Reasoning Steps from Text

الإجابة على الأسئلة المفتوحة على خطوات التفكير المختلفة من النص

238   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We develop a unified system to answer directly from text open-domain questions that may require a varying number of retrieval steps. We employ a single multi-task transformer model to perform all the necessary subtasks---retrieving supporting facts, reranking them, and predicting the answer from all retrieved documents---in an iterative fashion. We avoid crucial assumptions of previous work that do not transfer well to real-world settings, including exploiting knowledge of the fixed number of retrieval steps required to answer each question or using structured metadata like knowledge bases or web links that have limited availability. Instead, we design a system that can answer open-domain questions on any text collection without prior knowledge of reasoning complexity. To emulate this setting, we construct a new benchmark, called BeerQA, by combining existing one- and two-step datasets with a new collection of 530 questions that require three Wikipedia pages to answer, unifying Wikipedia corpora versions in the process. We show that our model demonstrates competitive performance on both existing benchmarks and this new benchmark. We make the new benchmark available at https://beerqa.github.io/.

References used
https://aclanthology.org/
rate research

Read More

Predicting the answer to a product-related question is an emerging field of research that recently attracted a lot of attention. Answering subjective and opinion-based questions is most challenging due to the dependency on customer generated content. Previous works mostly focused on review-aware answer prediction; however, these approaches fail for new or unpopular products, having no (or only a few) reviews at hand. In this work, we propose a novel and complementary approach for predicting the answer for such questions, based on the answers for similar questions asked on similar products. We measure the contextual similarity between products based on the answers they provide for the same question. A mixture-of-expert framework is used to predict the answer by aggregating the answers from contextually similar products. Empirical results demonstrate that our model outperforms strong baselines on some segments of questions, namely those that have roughly ten or more similar resolved questions in the corpus. We additionally publish two large-scale datasets used in this work, one is of similar product question pairs, and the second is of product question-answer pairs.
While diverse question answering (QA) datasets have been proposed and contributed significantly to the development of deep learning models for QA tasks, the existing datasets fall short in two aspects. First, we lack QA datasets covering complex ques tions that involve answers as well as the reasoning processes to get them. As a result, the state-of-the-art QA research on numerical reasoning still focuses on simple calculations and does not provide the mathematical expressions or evidence justifying the answers. Second, the QA community has contributed a lot of effort to improve the interpretability of QA models. However, they fail to explicitly show the reasoning process, such as the evidence order for reasoning and the interactions between different pieces of evidence. To address the above shortcoming, we introduce NOAHQA, a conversational and bilingual QA dataset with questions requiring numerical reasoning with compound mathematical expressions. With NOAHQA, we develop an interpretable reasoning graph as well as the appropriate evaluation metric to measure the answer quality. We evaluate the state-of-the-art QA models trained using existing QA datasets on NOAHQA and show that the best among them can only achieve 55.5 exact match scores, while the human performance is 89.7. We also present a new QA model for generating a reasoning graph where the reasoning graph metric still has a large gap compared with that of humans, eg, 28 scores.
Numerical reasoning skills are essential for complex question answering (CQA) over text. It requires opertaions including counting, comparison, addition and subtraction. A successful approach to CQA on text, Neural Module Networks (NMNs), follows the programmer-interpreter paradigm and leverages specialised modules to perform compositional reasoning. However, the NMNs framework does not consider the relationship between numbers and entities in both questions and paragraphs. We propose effective techniques to improve NMNs' numerical reasoning capabilities by making the interpreter question-aware and capturing the relationship between entities and numbers. On the same subset of the DROP dataset for CQA on text, experimental results show that our additions outperform the original NMNs by 3.0 points for the overall F1 score.
Dense neural text retrieval has achieved promising results on open-domain Question Answering (QA), where latent representations of questions and passages are exploited for maximum inner product search in the retrieval process. However, current dense retrievers require splitting documents into short passages that usually contain local, partial and sometimes biased context, and highly depend on the splitting process. As a consequence, it may yield inaccurate and misleading hidden representations, thus deteriorating the final retrieval result. In this work, we propose Dense Hierarchical Retrieval (DHR), a hierarchical framework which can generate accurate dense representations of passages by utilizing both macroscopic semantics in the document and microscopic semantics specific to each passage. Specifically, a document-level retriever first identifies relevant documents, among which relevant passages are then retrieved by a passage-level retriever. The ranking of the retrieved passages will be further calibrated by examining the document-level relevance. In addition, hierarchical title structure and two negative sampling strategies (i.e., In-Doc and In-Sec negatives) are investigated. We apply DHR to large-scale open-domain QA datasets. DHR significantly outperforms the original dense passage retriever, and helps an end-to-end QA system outperform the strong baselines on multiple open-domain QA benchmarks.
Enabling open-domain dialogue systems to ask clarifying questions when appropriate is an important direction for improving the quality of the system response. Namely, for cases when a user request is not specific enough for a conversation system to p rovide an answer right away, it is desirable to ask a clarifying question to increase the chances of retrieving a satisfying answer. To address the problem of asking clarifying questions in open-domain dialogues': (1) we collect and release a new dataset focused on open-domain single- and multi-turn conversations, (2) we benchmark several state-of-the-art neural baselines, and (3) we propose a pipeline consisting of offline and online steps for evaluating the quality of clarifying questions in various dialogues. These contributions are suitable as a foundation for further research.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا