في هذه الورقة، نحدد وتقييم منهجية لاستخراج الأسئلة المكانية التي تعتمد على التاريخ من الحوارات البصرية.نقول أن السؤال يعتمد على التاريخ إذا كان يتطلب (أجزاء) تاريخ حواره المراد تفسيره.نقول أن بعض أنواع الأسئلة المرئية تحدد السياق الذي يعتمد عليه سؤال مكاني للمتابعة.نسمي السؤال الذي يقيد السياق: الزناد، ونحن نسمي السؤال المكاني الذي يتطلب الإجابة على سؤال الزناد: Zoomer.نستخرج تلقائيا أزواج الزناد و Zoomer المختلفة بناء على خاصية Visual التي تعتمد الأسئلة عليها (على سبيل المثال، اللون، رقم).نحل تدريجيا يدويا أزواج الزناد و Zoomer المستخرجة تلقائيا للتحقق من أن Zoomers التي تتطلب الزناد.نحن ننفذ بنية أساسية بسيطة بناء على تشفير سوتا متعددة الوسائط.نتائجنا تكشف أن هناك مساحة كبيرة لتحسين الإجابة على الأسئلة التي تعتمد على التاريخ.
In this paper, we define and evaluate a methodology for extracting history-dependent spatial questions from visual dialogues. We say that a question is history-dependent if it requires (parts of) its dialogue history to be interpreted. We argue that some kinds of visual questions define a context upon which a follow-up spatial question relies. We call the question that restricts the context: trigger, and we call the spatial question that requires the trigger question to be answered: zoomer. We automatically extract different trigger and zoomer pairs based on the visual property that the questions rely on (e.g. color, number). We manually annotate the automatically extracted trigger and zoomer pairs to verify which zoomers require their trigger. We implement a simple baseline architecture based on a SOTA multimodal encoder. Our results reveal that there is much room for improvement for answering history-dependent questions.
References used
https://aclanthology.org/
Readers of academic research papers often read with the goal of answering specific questions. Question Answering systems that can answer those questions can make consumption of the content much more efficient. However, building such tools requires da
Predicting the answer to a product-related question is an emerging field of research that recently attracted a lot of attention. Answering subjective and opinion-based questions is most challenging due to the dependency on customer generated content.
We investigate ways to compose complex concepts in texts from primitive ones while grounding them in images. We propose Concept and Relation Graph (CRG), which builds on top of constituency analysis and consists of recursively combined concepts with
This paper introduces MediaSum, a large-scale media interview dataset consisting of 463.6K transcripts with abstractive summaries. To create this dataset, we collect interview transcripts from NPR and CNN and employ the overview and topic description
Enabling open-domain dialogue systems to ask clarifying questions when appropriate is an important direction for improving the quality of the system response. Namely, for cases when a user request is not specific enough for a conversation system to p