يقتصر معظم العمل المسبق على أنظمة الحوار الموجهة نحو المهام على دعم واجهات برمجة التطبيقات في المجال.ومع ذلك، قد يكون لدى المستخدمين طلبات خارج نطاق واجهات برمجة التطبيقات هذه.يركز هذا العمل على تحديد طلبات المستخدمين هذه.تعتمد الطرق الحالية لهذه المهمة بشكل أساسي على النماذج المدربة مسبقا بشكل صحيح على البيانات المشروحة الكبيرة.نقترح طريقة رواية، ريد، بناء على تقدير التعلم والكثافة التكيفية.يمكن تطبيق Rede على حالات الطابع الصفرية، ويتدرك بسرعة كاشف عالية الأداء مع بعض الطلقات فقط عن طريق تحديث أقل من المعلمات 3K.نوضح أداء Rede التنافسي في بيانات DSTC9 ومجموعة اختبار مجمعة حديثا.
Most prior work on task-oriented dialogue systems is restricted to supporting domain APIs. However, users may have requests that are out of the scope of these APIs. This work focuses on identifying such user requests. Existing methods for this task mainly rely on fine-tuning pre-trained models on large annotated data. We propose a novel method, REDE, based on adaptive representation learning and density estimation. REDE can be applied to zero-shot cases, and quickly learns a high-performing detector with only a few shots by updating less than 3K parameters. We demonstrate REDE's competitive performance on DSTC9 data and our newly collected test set.
References used
https://aclanthology.org/
As the labeling cost for different modules in task-oriented dialog (ToD) systems is expensive, a major challenge is to train different modules with the least amount of labeled data. Recently, large-scale pre-trained language models, have shown promis
Recent task-oriented dialogue systems learn a model from annotated dialogues, and such dialogues are in turn collected and annotated so that they are consistent with certain domain knowledge. However, in real scenarios, domain knowledge is subject to
In goal-oriented dialogue systems, users provide information through slot values to achieve specific goals. Practically, some combinations of slot values can be invalid according to external knowledge. For example, a combination of cheese pizza'' (a
Continual learning in task-oriented dialogue systems allows the system to add new domains and functionalities overtime after deployment, without incurring the high cost of retraining the whole system each time. In this paper, we propose a first-ever
Dialogue policy optimisation via reinforcement learning requires a large number of training interactions, which makes learning with real users time consuming and expensive. Many set-ups therefore rely on a user simulator instead of humans. These user