في هذه الورقة، نصف نظامنا للمهمة المشتركة بشأن مكافحة المعكرية CovID-19 باللغة الإنجليزية.تتألف الهندسة المعمارية المقترحة من نموذج تصنيف متعدد الناتج للمهام السبعة، مع طبقة اهتمام مهام متعددة المهام المتعددة الرأس لمجموع المعلومات المشتركة بين المهام.تم بناء هذا على رأس تمثيل التشفير الثنائي الاتجاه الذي تم الحصول عليه من محول روبرتا.تمكنا من تحقيق درجة F1 متوسط قدرها 0.891 في بيانات الاختبار، مما يؤدي إلى المنصب الثاني في لوحة الاختبار.
In this paper, we describe our system for the shared task on Fighting the COVID-19 Infodemic in the English Language. Our proposed architecture consists of a multi-output classification model for the seven tasks, with a task-wise multi-head attention layer for inter-task information aggregation. This was built on top of the Bidirectional Encoder Representations obtained from the RoBERTa Transformer. We were able to achieve a mean F1 score of 0.891 on the test data, leading us to the second position on the test-set leaderboard.
References used
https://aclanthology.org/
This paper provides a detailed overview of the system and its outcomes, which were produced as part of the NLP4IF Shared Task on Fighting the COVID-19 Infodemic at NAACL 2021. This task is accomplished using a variety of techniques. We used state-of-
This paper describes the winning model in the Arabic NLP4IF shared task for fighting the COVID-19 infodemic. The goal of the shared task is to check disinformation about COVID-19 in Arabic tweets. Our proposed model has been ranked 1st with an F1-Sco
We present the results and the main findings of the NLP4IF-2021 shared tasks. Task 1 focused on fighting the COVID-19 infodemic in social media, and it was offered in Arabic, Bulgarian, and English. Given a tweet, it asked to predict whether that twe
With the emergence of the COVID-19 pandemic, the political and the medical aspects of disinformation merged as the problem got elevated to a whole new level to become the first global infodemic. Fighting this infodemic has been declared one of the mo
The objective of this work was the introduction of an effective approach based on the AraBERT language model for fighting Tweets COVID-19 Infodemic. It was arranged in the form of a two-step pipeline, where the first step involved a series of pre-pro