Do you want to publish a course? Click here

R00 at NLP4IF-2021 Fighting COVID-19 Infodemic with Transformers and More Transformers

R00 في NLP4IF-2021 مكافحة المعكرية Covid-19 مع المحولات والمحولات أكثر

385   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper describes the winning model in the Arabic NLP4IF shared task for fighting the COVID-19 infodemic. The goal of the shared task is to check disinformation about COVID-19 in Arabic tweets. Our proposed model has been ranked 1st with an F1-Score of 0.780 and an Accuracy score of 0.762. A variety of transformer-based pre-trained language models have been experimented with through this study. The best-scored model is an ensemble of AraBERT-Base, Asafya-BERT, and ARBERT models. One of the study's key findings is showing the effect the pre-processing can have on every model's score. In addition to describing the winning model, the current study shows the error analysis.



References used
https://aclanthology.org/
rate research

Read More

This paper provides a detailed overview of the system and its outcomes, which were produced as part of the NLP4IF Shared Task on Fighting the COVID-19 Infodemic at NAACL 2021. This task is accomplished using a variety of techniques. We used state-of- the-art contextualized text representation models that were fine-tuned for the downstream task in hand. ARBERT, MARBERT,AraBERT, Arabic ALBERT and BERT-base-arabic were used. According to the results, BERT-base-arabic had the highest 0.784 F1 score on the test set.
We present the results and the main findings of the NLP4IF-2021 shared tasks. Task 1 focused on fighting the COVID-19 infodemic in social media, and it was offered in Arabic, Bulgarian, and English. Given a tweet, it asked to predict whether that twe et contains a verifiable claim, and if so, whether it is likely to be false, is of general interest, is likely to be harmful, and is worthy of manual fact-checking; also, whether it is harmful to society, and whether it requires the attention of policy makers. Task 2 focused on censorship detection, and was offered in Chinese. A total of ten teams submitted systems for task 1, and one team participated in task 2; nine teams also submitted a system description paper. Here, we present the tasks, analyze the results, and discuss the system submissions and the methods they used. Most submissions achieved sizable improvements over several baselines, and the best systems used pre-trained Transformers and ensembles. The data, the scorers and the leaderboards for the tasks are available at http://gitlab.com/NLP4IF/nlp4if-2021.
The spread of COVID-19 has been accompanied with widespread misinformation on social media. In particular, Twitterverse has seen a huge increase in dissemination of distorted facts and figures. The present work aims at identifying tweets regarding CO VID-19 which contains harmful and false information. We have experimented with a number of Deep Learning-based models, including different word embeddings, such as Glove, ELMo, among others. BERTweet model achieved the best overall F1-score of 0.881 and secured the third rank on the above task.
The massive spread of false information on social media has become a global risk especially in a global pandemic situation like COVID-19. False information detection has thus become a surging research topic in recent months. In recent years, supervis ed machine learning models have been used to automatically identify false information in social media. However, most of these machine learning models focus only on the language they were trained on. Given the fact that social media platforms are being used in different languages, managing machine learning models for each and every language separately would be chaotic. In this research, we experiment with multilingual models to identify false information in social media by using two recently released multilingual false information detection datasets. We show that multilingual models perform on par with the monolingual models and sometimes even better than the monolingual models to detect false information in social media making them more useful in real-world scenarios.
In this paper, we describe our system for the shared task on Fighting the COVID-19 Infodemic in the English Language. Our proposed architecture consists of a multi-output classification model for the seven tasks, with a task-wise multi-head attention layer for inter-task information aggregation. This was built on top of the Bidirectional Encoder Representations obtained from the RoBERTa Transformer. We were able to achieve a mean F1 score of 0.891 on the test data, leading us to the second position on the test-set leaderboard.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا