كان الهدف من هذا العمل هو إدخال نهج فعال يستند إلى نموذج اللغة العربية لمكافحة التغريدات Covid-19 InfoDemic.تم ترتيبها في شكل خط أنابيب من خطوتين، حيث تضمنت الخطوة الأولى سلسلة من إجراءات المعالجة المسبقة لتحويل Twitter Jargon، بما في ذلك الرموز التعبيرية والرموز، في نص عادي، واستغلت الخطوة الثانية نسخة من أرابيرت، والتيتم تدريب مسبقا على نص عادي، لضبط وتصنيف التغريدات فيما يتعلق بتسميةهم.كان استخدام نماذج اللغة المدربة مسبقا على النصوص العادية بدلا من الحصول على تغريدات من الضرورة لمعالجة قضايا نقدية مبينة من الأدبيات العلمية، وهي (1) نماذج اللغة المدربة مسبقا متوفرة على نطاق واسع في العديد من اللغات، وتجنب الوقت-Consuming والتدريب النموذجي المكثف من الموارد مباشرة على تغريدات من نقطة الصفر، مما يتيح التركيز فقط على ضبطه الجميل؛(2) النص العادي المتاح كورسا أكبر من تغريدة فقط، مما يسمح بأداء أفضل.
The objective of this work was the introduction of an effective approach based on the AraBERT language model for fighting Tweets COVID-19 Infodemic. It was arranged in the form of a two-step pipeline, where the first step involved a series of pre-processing procedures to transform Twitter jargon, including emojis and emoticons, into plain text, and the second step exploited a version of AraBERT, which was pre-trained on plain text, to fine-tune and classify the tweets with respect to their Label. The use of language models pre-trained on plain texts rather than on tweets was motivated by the necessity to address two critical issues shown by the scientific literature, namely (1) pre-trained language models are widely available in many languages, avoiding the time-consuming and resource-intensive model training directly on tweets from scratch, allowing to focus only on their fine-tuning; (2) available plain text corpora are larger than tweet-only ones, allowing for better performance.
References used
https://aclanthology.org/
We present the results and the main findings of the NLP4IF-2021 shared tasks. Task 1 focused on fighting the COVID-19 infodemic in social media, and it was offered in Arabic, Bulgarian, and English. Given a tweet, it asked to predict whether that twe
The massive spread of false information on social media has become a global risk especially in a global pandemic situation like COVID-19. False information detection has thus become a surging research topic in recent months. In recent years, supervis
This paper describes the winning model in the Arabic NLP4IF shared task for fighting the COVID-19 infodemic. The goal of the shared task is to check disinformation about COVID-19 in Arabic tweets. Our proposed model has been ranked 1st with an F1-Sco
This paper provides a detailed overview of the system and its outcomes, which were produced as part of the NLP4IF Shared Task on Fighting the COVID-19 Infodemic at NAACL 2021. This task is accomplished using a variety of techniques. We used state-of-
With the emergence of the COVID-19 pandemic, the political and the medical aspects of disinformation merged as the problem got elevated to a whole new level to become the first global infodemic. Fighting this infodemic has been declared one of the mo