نقدم النتائج والنتائج الرئيسية للمهام المشتركة NLP4IF-2021. تركز المهمة 1 على محاربة المعكرات المعاكسة 19 في وسائل التواصل الاجتماعي، وتم عرضها باللغة العربية والكبلانية والإنجليزية. بالنظر إلى تغريدة، طلبت التنبؤ بما إذا كانت هذه التغريدات تحتوي على مطالبة يمكن التحقق منها، وإذا كان الأمر كذلك، فمن المحتمل أن تكون خاطئة، من المحتمل أن تكون ذات مصلحة عامة، من المرجح أن تكون ضارة، وتستحق التحقق من الحقائق اليدوية؛ أيضا، سواء كان ضارا بالمجتمع، وما إذا كان يتطلب انتباه صانعي السياسات. المهمة 2 التي تركز على كشف الرقابة، وتم عرضها باللغة الصينية. ما مجموعه عشرة فرق تقدم أنظمة للمهمة 1، وشارك فريق واحد في المهمة 2؛ قدمت تسعة فرق أيضا ورقة وصف للنظام. هنا، نقدم المهام، وتحليل النتائج، ومناقشة طلبات النظام والأساليب التي استخدموها. حققت معظم التقديمات تحسينات كبيرة على العديد من خطوط الأساس، وأفضل أنظمة تستخدم المحولات المدربة مسبقا وفرق. تتوفر البيانات، والهدوشات ومصدرها للمهام على http://gitlab.com/nlp4if/nlp4if-2021.
We present the results and the main findings of the NLP4IF-2021 shared tasks. Task 1 focused on fighting the COVID-19 infodemic in social media, and it was offered in Arabic, Bulgarian, and English. Given a tweet, it asked to predict whether that tweet contains a verifiable claim, and if so, whether it is likely to be false, is of general interest, is likely to be harmful, and is worthy of manual fact-checking; also, whether it is harmful to society, and whether it requires the attention of policy makers. Task 2 focused on censorship detection, and was offered in Chinese. A total of ten teams submitted systems for task 1, and one team participated in task 2; nine teams also submitted a system description paper. Here, we present the tasks, analyze the results, and discuss the system submissions and the methods they used. Most submissions achieved sizable improvements over several baselines, and the best systems used pre-trained Transformers and ensembles. The data, the scorers and the leaderboards for the tasks are available at http://gitlab.com/NLP4IF/nlp4if-2021.
References used
https://aclanthology.org/
This paper provides a detailed overview of the system and its outcomes, which were produced as part of the NLP4IF Shared Task on Fighting the COVID-19 Infodemic at NAACL 2021. This task is accomplished using a variety of techniques. We used state-of-
This paper describes the winning model in the Arabic NLP4IF shared task for fighting the COVID-19 infodemic. The goal of the shared task is to check disinformation about COVID-19 in Arabic tweets. Our proposed model has been ranked 1st with an F1-Sco
We present the results and main findings of the shared task at WOAH 5 on hateful memes detection. The task include two subtasks relating to distinct challenges in the fine-grained detection of hateful memes: (1) the protected category attacked by the
The massive spread of false information on social media has become a global risk especially in a global pandemic situation like COVID-19. False information detection has thus become a surging research topic in recent months. In recent years, supervis
In this paper, we describe our system for the shared task on Fighting the COVID-19 Infodemic in the English Language. Our proposed architecture consists of a multi-output classification model for the seven tasks, with a task-wise multi-head attention