Do you want to publish a course? Click here

Findings of the NLP4IF-2021 Shared Tasks on Fighting the COVID-19 Infodemic and Censorship Detection

النتائج التي توصل إليها المهام المشتركة NLP4IF-2021 بشأن مكافحة الكشف عن المعكرات والرقابة CovID-19

332   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We present the results and the main findings of the NLP4IF-2021 shared tasks. Task 1 focused on fighting the COVID-19 infodemic in social media, and it was offered in Arabic, Bulgarian, and English. Given a tweet, it asked to predict whether that tweet contains a verifiable claim, and if so, whether it is likely to be false, is of general interest, is likely to be harmful, and is worthy of manual fact-checking; also, whether it is harmful to society, and whether it requires the attention of policy makers. Task 2 focused on censorship detection, and was offered in Chinese. A total of ten teams submitted systems for task 1, and one team participated in task 2; nine teams also submitted a system description paper. Here, we present the tasks, analyze the results, and discuss the system submissions and the methods they used. Most submissions achieved sizable improvements over several baselines, and the best systems used pre-trained Transformers and ensembles. The data, the scorers and the leaderboards for the tasks are available at http://gitlab.com/NLP4IF/nlp4if-2021.



References used
https://aclanthology.org/
rate research

Read More

This paper provides a detailed overview of the system and its outcomes, which were produced as part of the NLP4IF Shared Task on Fighting the COVID-19 Infodemic at NAACL 2021. This task is accomplished using a variety of techniques. We used state-of- the-art contextualized text representation models that were fine-tuned for the downstream task in hand. ARBERT, MARBERT,AraBERT, Arabic ALBERT and BERT-base-arabic were used. According to the results, BERT-base-arabic had the highest 0.784 F1 score on the test set.
This paper describes the winning model in the Arabic NLP4IF shared task for fighting the COVID-19 infodemic. The goal of the shared task is to check disinformation about COVID-19 in Arabic tweets. Our proposed model has been ranked 1st with an F1-Sco re of 0.780 and an Accuracy score of 0.762. A variety of transformer-based pre-trained language models have been experimented with through this study. The best-scored model is an ensemble of AraBERT-Base, Asafya-BERT, and ARBERT models. One of the study's key findings is showing the effect the pre-processing can have on every model's score. In addition to describing the winning model, the current study shows the error analysis.
We present the results and main findings of the shared task at WOAH 5 on hateful memes detection. The task include two subtasks relating to distinct challenges in the fine-grained detection of hateful memes: (1) the protected category attacked by the meme and (2) the attack type. 3 teams submitted system description papers. This shared task builds on the hateful memes detection task created by Facebook AI Research in 2020.
The massive spread of false information on social media has become a global risk especially in a global pandemic situation like COVID-19. False information detection has thus become a surging research topic in recent months. In recent years, supervis ed machine learning models have been used to automatically identify false information in social media. However, most of these machine learning models focus only on the language they were trained on. Given the fact that social media platforms are being used in different languages, managing machine learning models for each and every language separately would be chaotic. In this research, we experiment with multilingual models to identify false information in social media by using two recently released multilingual false information detection datasets. We show that multilingual models perform on par with the monolingual models and sometimes even better than the monolingual models to detect false information in social media making them more useful in real-world scenarios.
In this paper, we describe our system for the shared task on Fighting the COVID-19 Infodemic in the English Language. Our proposed architecture consists of a multi-output classification model for the seven tasks, with a task-wise multi-head attention layer for inter-task information aggregation. This was built on top of the Bidirectional Encoder Representations obtained from the RoBERTa Transformer. We were able to achieve a mean F1 score of 0.891 on the test data, leading us to the second position on the test-set leaderboard.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا