Do you want to publish a course? Click here

Predicting the Factuality of Reporting of News Media Using Observations about User Attention in Their YouTube Channels

التنبؤ بالتقويم الإبلاغ عن وسائل الإعلام الإخبارية باستخدام الملاحظات حول انتباه المستخدم في قنوات YouTube الخاصة بهم

244   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We propose a novel framework for predicting the factuality of reporting of news media outlets by studying the user attention cycles in their YouTube channels. In particular, we design a rich set of features derived from the temporal evolution of the number of views, likes, dislikes, and comments for a video, which we then aggregate to the channel level. We develop and release a dataset for the task, containing observations of user attention on YouTube channels for 489 news media. Our experiments demonstrate both complementarity and sizable improvements over state-of-the-art textual representations.



References used
https://aclanthology.org/
rate research

Read More

The way information is generated and disseminated has changed dramatically over the last decade. Identifying the political perspective shaping the way events are discussed in the media becomes more important due to the sharp increase in the number of news outlets and articles. Previous approaches usually only leverage linguistic information. However, news articles attempt to maintain credibility and seem impartial. Therefore, bias is introduced in subtle ways, usually by emphasizing different aspects of the story. In this paper, we propose a novel framework that considers entities mentioned in news articles and external knowledge about them, capturing the bias with respect to those entities. We explore different ways to inject entity information into the text model. Experiments show that our proposed framework achieves significant improvements over the standard text models, and is capable of identifying the difference in news narratives with different perspectives.
This paper presents the results that were obtained from the WASSA 2021 shared task on predicting empathy and emotions. The participants were given access to a dataset comprising empathic reactions to news stories where harm is done to a person, group , or other. These reactions consist of essays, Batson empathic concern, and personal distress scores, and the dataset was further extended with news articles, person-level demographic information (age, gender, ethnicity, income, education level), and personality information. Additionally, emotion labels, namely Ekman's six basic emotions, were added to the essays at both the document and sentence level. Participation was encouraged in two tracks: predicting empathy and predicting emotion categories. In total five teams participated in the shared task. We summarize the methods and resources used by the participating teams.
Millions of hashtags are created on social media every day to cross-refer messages concerning similar topics. To help people find the topics they want to discuss, this paper characterizes a user's hashtagging preferences via predicting how likely the y will post with a hashtag. It is hypothesized that one's interests in a hashtag are related with what they said before (user history) and the existing posts present the hashtag (hashtag contexts). These factors are married in the deep semantic space built with a pre-trained BERT and a neural topic model via multitask learning. In this way, user interests learned from the past can be customized to match future hashtags, which is beyond the capability of existing methods assuming unchanged hashtag semantics. Furthermore, we propose a novel personalized topic attention to capture salient contents to personalize hashtag contexts. Experiments on a large-scale Twitter dataset show that our model significantly outperforms the state-of-the-art recommendation approach without exploiting latent topics.
While the production of information in the European early modern period is a well-researched topic, the question how people were engaging with the information explosion that occurred in early modern Europe, is still underexposed. This paper presents the annotations and experiments aimed at exploring whether we can automatically extract media related information (source, perception, and receiver) from a corpus of early modern Dutch chronicles in order to get insight in the mediascape of early modern middle class people from a historic perspective. In a number of classification experiments with Conditional Random Fields, three categories of features are tested: (i) raw and binary word embedding features, (ii) lexicon features, and (iii) character features. Overall, the classifier that uses raw embeddings performs slightly better. However, given that the best F-scores are around 0.60, we conclude that the machine learning approach needs to be combined with a close reading approach for the results to be useful to answer history research questions.
Many recent works have demonstrated that unsupervised sentence representations of neural networks encode syntactic information by observing that neural language models are able to predict the agreement between a verb and its subject. We take a critic al look at this line of research by showing that it is possible to achieve high accuracy on this agreement task with simple surface heuristics, indicating a possible flaw in our assessment of neural networks' syntactic ability. Our fine-grained analyses of results on the long-range French object-verb agreement show that contrary to LSTMs, Transformers are able to capture a non-trivial amount of grammatical structure.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا