Do you want to publish a course? Click here

Transformer-based Screenplay Summarization Using Augmented Learning Representation with Dialogue Information

تلخيص سيناريو سينتاج محول باستخدام تمثيل التعلم المعزز مع معلومات الحوار

427   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Screenplay summarization is the task of extracting informative scenes from a screenplay. The screenplay contains turning point (TP) events that change the story direction and thus define the story structure decisively. Accordingly, this task can be defined as the TP identification task. We suggest using dialogue information, one attribute of screenplays, motivated by previous work that discovered that TPs have a relation with dialogues appearing in screenplays. To teach a model this characteristic, we add a dialogue feature to the input embedding. Moreover, in an attempt to improve the model architecture of previous studies, we replace LSTM with Transformer. We observed that the model can better identify TPs in a screenplay by using dialogue information and that a model adopting Transformer outperforms LSTM-based models.



References used
https://aclanthology.org/
rate research

Read More

Considering the importance of building a good Visual Dialog (VD) Questioner, many researchers study the topic under a Q-Bot-A-Bot image-guessing game setting, where the Questioner needs to raise a series of questions to collect information of an undi sclosed image. Despite progress has been made in Supervised Learning (SL) and Reinforcement Learning (RL), issues still exist. Firstly, previous methods do not provide explicit and effective guidance for Questioner to generate visually related and informative questions. Secondly, the effect of RL is hampered by an incompetent component, i.e., the Guesser, who makes image predictions based on the generated dialogs and assigns rewards accordingly. To enhance VD Questioner: 1) we propose a Related entity enhanced Questioner (ReeQ) that generates questions under the guidance of related entities and learns entity-based questioning strategy from human dialogs; 2) we propose an Augmented Guesser that is strong and is optimized for VD especially. Experimental results on the VisDial v1.0 dataset show that our approach achieves state-of-the-art performance on both image-guessing task and question diversity. Human study further verifies that our model generates more visually related, informative and coherent questions.
In this paper, we study the abstractive sentence summarization. There are two essential information features that can influence the quality of news summarization, which are topic keywords and the knowledge structure of the news text. Besides, the exi sting knowledge encoder has poor performance on sparse sentence knowledge structure. Considering these, we propose KAS, a novel Knowledge and Keywords Augmented Abstractive Sentence Summarization framework. Tri-encoders are utilized to integrate contexts of original text, knowledge structure and keywords topic simultaneously, with a special linearized knowledge structure. Automatic and human evaluations demonstrate that KAS achieves the best performances.
Spoken language understanding, usually including intent detection and slot filling, is a core component to build a spoken dialog system. Recent research shows promising results by jointly learning of those two tasks based on the fact that slot fillin g and intent detection are sharing semantic knowledge. Furthermore, attention mechanism boosts joint learning to achieve state-of-the-art results. However, current joint learning models ignore the following important facts: 1. Long-term slot context is not traced effectively, which is crucial for future slot filling. 2. Slot tagging and intent detection could be mutually rewarding, but bi-directional interaction between slot filling and intent detection remains seldom explored. In this paper, we propose a novel approach to model long-term slot context and to fully utilize the semantic correlation between slots and intents. We adopt a key-value memory network to model slot context dynamically and to track more important slot tags decoded before, which are then fed into our decoder for slot tagging. Furthermore, gated memory information is utilized to perform intent detection, mutually improving both tasks through global optimization. Experiments on benchmark ATIS and Snips datasets show that our model achieves state-of-the-art performance and outperforms other methods, especially for the slot filling task.
Incorporating knowledge bases (KB) into end-to-end task-oriented dialogue systems is challenging, since it requires to properly represent the entity of KB, which is associated with its KB context and dialogue context. The existing works represent the entity with only perceiving a part of its KB context, which can lead to the less effective representation due to the information loss, and adversely favor KB reasoning and response generation. To tackle this issue, we explore to fully contextualize the entity representation by dynamically perceiving all the relevant entities and dialogue history. To achieve this, we propose a COntext-aware Memory Enhanced Transformer framework (COMET), which treats the KB as a sequence and leverages a novel Memory Mask to enforce the entity to only focus on its relevant entities and dialogue history, while avoiding the distraction from the irrelevant entities. Through extensive experiments, we show that our COMET framework can achieve superior performance over the state of the arts.
Summarizing conversations via neural approaches has been gaining research traction lately, yet it is still challenging to obtain practical solutions. Examples of such challenges include unstructured information exchange in dialogues, informal interac tions between speakers, and dynamic role changes of speakers as the dialogue evolves. Many of such challenges result in complex coreference links. Therefore, in this work, we investigate different approaches to explicitly incorporate coreference information in neural abstractive dialogue summarization models to tackle the aforementioned challenges. Experimental results show that the proposed approaches achieve state-of-the-art performance, implying it is useful to utilize coreference information in dialogue summarization. Evaluation results on factual correctness suggest such coreference-aware models are better at tracing the information flow among interlocutors and associating accurate status/actions with the corresponding interlocutors and person mentions.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا