Do you want to publish a course? Click here

Coreference-Aware Dialogue Summarization

تلخيص الحوار Coreference-امل

386   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Summarizing conversations via neural approaches has been gaining research traction lately, yet it is still challenging to obtain practical solutions. Examples of such challenges include unstructured information exchange in dialogues, informal interactions between speakers, and dynamic role changes of speakers as the dialogue evolves. Many of such challenges result in complex coreference links. Therefore, in this work, we investigate different approaches to explicitly incorporate coreference information in neural abstractive dialogue summarization models to tackle the aforementioned challenges. Experimental results show that the proposed approaches achieve state-of-the-art performance, implying it is useful to utilize coreference information in dialogue summarization. Evaluation results on factual correctness suggest such coreference-aware models are better at tracing the information flow among interlocutors and associating accurate status/actions with the corresponding interlocutors and person mentions.



References used
https://aclanthology.org/
rate research

Read More

Screenplay summarization is the task of extracting informative scenes from a screenplay. The screenplay contains turning point (TP) events that change the story direction and thus define the story structure decisively. Accordingly, this task can be d efined as the TP identification task. We suggest using dialogue information, one attribute of screenplays, motivated by previous work that discovered that TPs have a relation with dialogues appearing in screenplays. To teach a model this characteristic, we add a dialogue feature to the input embedding. Moreover, in an attempt to improve the model architecture of previous studies, we replace LSTM with Transformer. We observed that the model can better identify TPs in a screenplay by using dialogue information and that a model adopting Transformer outperforms LSTM-based models.
Dialogue summarization is a long-standing task in the field of NLP, and several data sets with dialogues and associated human-written summaries of different styles exist. However, it is unclear for which type of dialogue which type of summary is most appropriate. For this reason, we apply a linguistic model of dialogue types to derive matching summary items and NLP tasks. This allows us to map existing dialogue summarization data sets into this model and identify gaps and potential directions for future work. As part of this process, we also provide an extensive overview of existing dialogue summarization data sets.
Dialogue summarization helps readers capture salient information from long conversations in meetings, interviews, and TV series. However, real-world dialogues pose a great challenge to current summarization models, as the dialogue length typically ex ceeds the input limits imposed by recent transformer-based pre-trained models, and the interactive nature of dialogues makes relevant information more context-dependent and sparsely distributed than news articles. In this work, we perform a comprehensive study on long dialogue summarization by investigating three strategies to deal with the lengthy input problem and locate relevant information: (1) extended transformer models such as Longformer, (2) retrieve-then-summarize pipeline models with several dialogue utterance retrieval methods, and (3) hierarchical dialogue encoding models such as HMNet. Our experimental results on three long dialogue datasets (QMSum, MediaSum, SummScreen) show that the retrieve-then-summarize pipeline models yield the best performance. We also demonstrate that the summary quality can be further improved with a stronger retrieval model and pretraining on proper external summarization datasets.
Dialogue summarization comes with its own peculiar challenges as opposed to news or scientific articles summarization. In this work, we explore four different challenges of the task: handling and differentiating parts of the dialogue belonging to mul tiple speakers, negation understanding, reasoning about the situation, and informal language understanding. Using a pretrained sequence-to-sequence language model, we explore speaker name substitution, negation scope highlighting, multi-task learning with relevant tasks, and pretraining on in-domain data. Our experiments show that our proposed techniques indeed improve summarization performance, outperforming strong baselines.
This study proposes an utterance position-aware approach for a neural network-based dialogue act recognition (DAR) model, which incorporates positional encoding for utterance's absolute or relative position. The proposed approach is inspired by the o bservation that some dialogue acts have tendencies of occurrence positions. The evaluations on the Switchboard corpus show that the proposed positional encoding of utterances statistically significantly improves the performance of DAR.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا