باستخدام شكل النمذجة ومشابه الكلمة القائمة على المعجم، نجد أن القصص الناتجة عن GPT-3 تظهر العديد من الصور النمطية الجنسانية المعروفة.قصص تم إنشاؤها تصور مواضيع وأوصاف مختلفة اعتمادا على الجنس المتصور GPT-3 من الشخصية في موجه، مع أحرف أنثوية أكثر عرضة للأسرة والمظهر، ووصف بأنه أقل قوة من أحرف الذكورية، حتى عند الاقتراح بأفعال عالية الطاقةفي موجه.تجمع دراستنا أسئلة حول كيف يمكن للمرء تجنب التحيزات الاجتماعية غير المقصودة عند استخدام نماذج لغة كبيرة لرواية القصص.
Using topic modeling and lexicon-based word similarity, we find that stories generated by GPT-3 exhibit many known gender stereotypes. Generated stories depict different topics and descriptions depending on GPT-3's perceived gender of the character in a prompt, with feminine characters more likely to be associated with family and appearance, and described as less powerful than masculine characters, even when associated with high power verbs in a prompt. Our study raises questions on how one can avoid unintended social biases when using large language models for storytelling.
References used
https://aclanthology.org/
Human innovation in language, such as inventing new words, is a challenge for pretrained language models. We assess the ability of one large model, GPT-3, to process new words and decide on their meaning. We create a set of nonce words and prompt GPT
This study tries to show the importance of the story title and its
significance in children's stories. It displays the sense of the subject and
point to the resources of titles of the children's stories, through critical
studying of groups of children's stories in the Arab world.
Dialogue State Tracking is central to multi-domain task-oriented dialogue systems, responsible for extracting information from user utterances. We present a novel hybrid architecture that augments GPT-2 with representations derived from Graph Attenti
AbstractMachine translation (MT) technology has facilitated our daily tasks by providing accessible shortcuts for gathering, processing, and communicating information. However, it can suffer from biases that harm users and society at large. As a rela
Grammatical gender may be determined by semantics, orthography, phonology, or could even be arbitrary. Identifying patterns in the factors that govern noun genders can be useful for language learners, and for understanding innate linguistic sources o