Do you want to publish a course? Click here

OffendES: A New Corpus in Spanish for Offensive Language Research

الإساءة: جثة جديدة باللغة الإسبانية لأبحاث اللغة الهجومية

364   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Offensive language detection and analysis has become a major area of research in Natural Language Processing. The freedom of participation in social media has exposed online users to posts designed to denigrate, insult or hurt them according to gender, race, religion, ideology, or other personal characteristics. Focusing on young influencers from the well-known social platforms of Twitter, Instagram, and YouTube, we have collected a corpus composed of 47,128 Spanish comments manually labeled on offensive pre-defined categories. A subset of the corpus attaches a degree of confidence to each label, so both multi-class classification and multi-output regression studies are possible. In this paper, we introduce the corpus, discuss its building process, novelties, and some preliminary experiments with it to serve as a baseline for the research community.



References used
https://aclanthology.org/
rate research

Read More

Sarcasm detection is one of the top challenging tasks in text classification, particularly for informal Arabic with high syntactic and semantic ambiguity. We propose two systems that harness knowledge from multiple tasks to improve the performance of the classifier. This paper presents the systems used in our participation to the two sub-tasks of the Sixth Arabic Natural Language Processing Workshop (WANLP); Sarcasm Detection and Sentiment Analysis. Our methodology is driven by the hypothesis that tweets with negative sentiment and tweets with sarcasm content are more likely to have offensive content, thus, fine-tuning the classification model using large corpus of offensive language, supports the learning process of the model to effectively detect sentiment and sarcasm contents. Results demonstrate the effectiveness of our approach for sarcasm detection task over sentiment analysis task.
The main idea of this solution has been to focus on corpus cleaning and preparation and after that, use an out of box solution (OpenNMT) with its default published transformer model. To prepare the corpus, we have used set of standard tools (as Moses scripts or python packages), but also, among other python scripts, a python custom tokenizer with the ability to replace numbers for variables, solve the upper/lower case issue of the vocabulary and provide good segmentation for most of the punctuation. We also have started a line to clean corpus based on statistical probability estimation of source-target corpus, with unclear results. Also, we have run some tests with syllabical word segmentation, again with unclear results, so at the end, after word sentence tokenization we have used BPE SentencePiece for subword units to feed OpenNMT.
Natural language processing (NLP) research combines the study of universal principles, through basic science, with applied science targeting specific use cases and settings. However, the process of exchange between basic NLP and applications is often assumed to emerge naturally, resulting in many innovations going unapplied and many important questions left unstudied. We describe a new paradigm of Translational NLP, which aims to structure and facilitate the processes by which basic and applied NLP research inform one another. Translational NLP thus presents a third research paradigm, focused on understanding the challenges posed by application needs and how these challenges can drive innovation in basic science and technology design. We show that many significant advances in NLP research have emerged from the intersection of basic principles with application needs, and present a conceptual framework outlining the stakeholders and key questions in translational research. Our framework provides a roadmap for developing Translational NLP as a dedicated research area, and identifies general translational principles to facilitate exchange between basic and applied research.
The present study is an ongoing research that aims to investigate lexico-grammatical and stylistic features of texts in the environmental domain in English, their implications for translation into Ukrainian as well as the translation of key terminological units based on a specialised parallel and comparable corpora.
Detecting offensive language on Twitter has many applications ranging from detecting/predicting bullying to measuring polarization. In this paper, we focus on building a large Arabic offensive tweet dataset. We introduce a method for building a datas et that is not biased by topic, dialect, or target. We produce the largest Arabic dataset to date with special tags for vulgarity and hate speech. We thoroughly analyze the dataset to determine which topics, dialects, and gender are most associated with offensive tweets and how Arabic speakers useoffensive language. Lastly, we conduct many experiments to produce strong results (F1 =83.2) on the dataset using SOTA techniques.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا