Do you want to publish a course? Click here

Zero-shot Sequence Labeling for Transformer-based Sentence Classifiers

صفر تسلسل تسلسل لتصنيف منصوص السلبية القائمة على المحولات

298   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We investigate how sentence-level transformers can be modified into effective sequence labelers at the token level without any direct supervision. Existing approaches to zero-shot sequence labeling do not perform well when applied on transformer-based architectures. As transformers contain multiple layers of multi-head self-attention, information in the sentence gets distributed between many tokens, negatively affecting zero-shot token-level performance. We find that a soft attention module which explicitly encourages sharpness of attention weights can significantly outperform existing methods.



References used
https://aclanthology.org/
rate research

Read More

Predicting linearized Abstract Meaning Representation (AMR) graphs using pre-trained sequence-to-sequence Transformer models has recently led to large improvements on AMR parsing benchmarks. These parsers are simple and avoid explicit modeling of str ucture but lack desirable properties such as graph well-formedness guarantees or built-in graph-sentence alignments. In this work we explore the integration of general pre-trained sequence-to-sequence language models and a structure-aware transition-based approach. We depart from a pointer-based transition system and propose a simplified transition set, designed to better exploit pre-trained language models for structured fine-tuning. We also explore modeling the parser state within the pre-trained encoder-decoder architecture and different vocabulary strategies for the same purpose. We provide a detailed comparison with recent progress in AMR parsing and show that the proposed parser retains the desirable properties of previous transition-based approaches, while being simpler and reaching the new parsing state of the art for AMR 2.0, without the need for graph re-categorization.
Conditional Random Field (CRF) based neural models are among the most performant methods for solving sequence labeling problems. Despite its great success, CRF has the shortcoming of occasionally generating illegal sequences of tags, e.g. sequences c ontaining an I-'' tag immediately after an O'' tag, which is forbidden by the underlying BIO tagging scheme. In this work, we propose Masked Conditional Random Field (MCRF), an easy to implement variant of CRF that impose restrictions on candidate paths during both training and decoding phases. We show that the proposed method thoroughly resolves this issue and brings significant improvement over existing CRF-based models with near zero additional cost.
Complex natural language applications such as speech translation or pivot translation traditionally rely on cascaded models. However,cascaded models are known to be prone to error propagation and model discrepancy problems. Furthermore, there is no p ossibility of using end-to-end training data in conventional cascaded systems, meaning that the training data most suited for the task cannot be used.Previous studies suggested several approaches for integrated end-to-end training to overcome those problems, however they mostly rely on(synthetic or natural) three-way data. We propose a cascaded model based on the non-autoregressive Transformer that enables end-to-end training without the need for an explicit intermediate representation. This new architecture (i) avoids unnecessary early decisions that can cause errors which are then propagated throughout the cascaded models and (ii) utilizes the end-to-end training data directly. We conduct an evaluation on two pivot-based machine translation tasks, namely French→German and German→Czech. Our experimental results show that the proposed architecture yields an improvement of more than 2 BLEU for French→German over the cascaded baseline.
Opinion target extraction and opinion term extraction are two fundamental tasks in Aspect Based Sentiment Analysis (ABSA). Many recent works on ABSA focus on Target-oriented Opinion Words (or Terms) Extraction (TOWE), which aims at extracting the cor responding opinion words for a given opinion target. TOWE can be further applied to Aspect-Opinion Pair Extraction (AOPE) which aims at extracting aspects (i.e., opinion targets) and opinion terms in pairs. In this paper, we propose Target-Specified sequence labeling with Multi-head Self-Attention (TSMSA) for TOWE, in which any pre-trained language model with multi-head self-attention can be integrated conveniently. As a case study, we also develop a Multi-Task structure named MT-TSMSA for AOPE by combining our TSMSA with an aspect and opinion term extraction module. Experimental results indicate that TSMSA outperforms the benchmark methods on TOWE significantly; meanwhile, the performance of MT-TSMSA is similar or even better than state-of-the-art AOPE baseline models.
Current benchmark tasks for natural language processing contain text that is qualitatively different from the text used in informal day to day digital communication. This discrepancy has led to severe performance degradation of state-of-the-art NLP m odels when fine-tuned on real-world data. One way to resolve this issue is through lexical normalization, which is the process of transforming non-standard text, usually from social media, into a more standardized form. In this work, we propose a sentence-level sequence-to-sequence model based on mBART, which frames the problem as a machine translation problem. As the noisy text is a pervasive problem across languages, not just English, we leverage the multi-lingual pre-training of mBART to fine-tune it to our data. While current approaches mainly operate at the word or subword level, we argue that this approach is straightforward from a technical standpoint and builds upon existing pre-trained transformer networks. Our results show that while word-level, intrinsic, performance evaluation is behind other methods, our model improves performance on extrinsic, downstream tasks through normalization compared to models operating on raw, unprocessed, social media text.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا