تتابع طريقة تحسين الكلام القائم على اخفاء قناع مضاعف ينطبق على الطيفية من الكلام الفاسد من ضوضاء الإدخال، وغالبا ما تستخدم شبكة عميقة العصبية (DNN) لتعلم القناع. على وجه الخصوص، يمكن أن تكون الميزات الشائعة الاستخدام للتعرف على الكلام التلقائي بمثابة مدخلات DNN لتعلم القناع حسن التصرف الذي يقلل بشكل كبير من تشويه الضوضاء للكلمات المعالجة. تقترح هذه الدراسة إعادة معالجة ميزات خطاب المدخلات لمقنعة النسبة المثالية (IRM) - DNN بواسطة Lowpass Filtering من أجل تخفيف مكونات الضوضاء. على وجه الخصوص، فإننا نوظف تحويل المويجات المنفصلة (DWT) لتحلل تسلسل ميزة الكلام الزمنية وتوسيع نطاق معاملات التفاصيل، مما يتوافق مع الجزء المرتفع من التسلسل. تكشف التجارب الأولية التي أجراها مجموعة فرعية من تيميت كوربوس أن الطريقة المقترحة يمكن أن تجعل IRM الناتجة تحقيق جودة أعلى للكلام وضوحا للإشارات الاضافة عن الضوضاء الخليفة مقارنة مع IRM الأصلي، مما يشير إلى أن تسلسل الميزات الزمنية المرشح ل Lowpass يمكن أن يتعلم متفوقة شبكة IRM لتعزيز الكلام.
The masking-based speech enhancement method pursues a multiplicative mask that applies to the spectrogram of input noise-corrupted utterance, and a deep neural network (DNN) is often used to learn the mask. In particular, the features commonly used for automatic speech recognition can serve as the input of the DNN to learn the well-behaved mask that significantly reduce the noise distortion of processed utterances. This study proposes to preprocess the input speech features for the ideal ratio mask (IRM)-based DNN by lowpass filtering in order to alleviate the noise components. In particular, we employ the discrete wavelet transform (DWT) to decompose the temporal speech feature sequence and scale down the detail coefficients, which correspond to the high-pass portion of the sequence. Preliminary experiments conducted on a subset of TIMIT corpus reveal that the proposed method can make the resulting IRM achieve higher speech quality and intelligibility for the babble noise-corrupted signals compared with the original IRM, indicating that the lowpass filtered temporal feature sequence can learn a superior IRM network for speech enhancement.
References used
https://aclanthology.org/
In this project we study wavelet and wavelet transform, and the possibility of its employment in the processing and analysis of the speech signal in order to enhance the signal and remove noise of it. We will present different algorithms that depend
In this paper, we describe experiments designed to evaluate the impact of stylometric and emotion-based features on hate speech detection: the task of classifying textual content into hate or non-hate speech classes. Our experiments are conducted for
The speech recognition is one of the most modern technologies, which entered force
in various fields of life, whether medical or security or industrial techniques. Accordingly,
many related systems were developed, which differ from each otherin fea
Bias mitigation approaches reduce models' dependence on sensitive features of data, such as social group tokens (SGTs), resulting in equal predictions across the sensitive features. In hate speech detection, however, equalizing model predictions may
This paper describes the submission to the IWSLT 2021 Low-Resource Speech Translation Shared Task by IMS team. We utilize state-of-the-art models combined with several data augmentation, multi-task and transfer learning approaches for the automatic s