لتوفير تحليل الأبحاث الأخيرة من جيل الأسئلة التلقائي من النص، أجرينا مسح 9 أوراق بين عامي 2019 إلى أوائل 2021، تم استرجاعها من الورق مع التعليمات البرمجية (PWC).تتبع بحثنا الاستطلاع الذي أبلغ عنه كردي وآخرون. (2020)، حيث يتم توفير تحليل 93 ورقة من عام 2014 إلى مبادر عام 2019.لقد قمنا بتحليل الخمسين من الجوانب بما في ذلك: (1) الغرض من جيل السؤال، (2) طريقة التوليد، و (3) تقييم.وجدنا أن النهج الحديثة تميل إلى الاعتماد على المعلومات الدلالية والنماذج القائمة على المحولات تجذب اهتماما متزايدا لأنها أكثر كفاءة.من ناحية أخرى، نظرا لأنه لا يوجد أي مقياس تقييم تلقائي تم الاعتراف على نطاق واسع المصمم لجيل السؤال، يعتمد الباحثون مقاييس مهام معالجة اللغة الطبيعية الأخرى لمقارنة الأنظمة المختلفة.
To provide analysis of recent researches of automatic question generation from text,we surveyed 9 papers between 2019 to early 2021, retrieved from Paper with Code(PwC). Our research follows the survey reported by Kurdi et al.(2020), in which analysis of 93 papers from 2014 to early2019 are provided. We analyzed the 9papers from aspects including: (1) purpose of question generation, (2) generation method, and (3) evaluation. We found that recent approaches tend to rely on semantic information and Transformer-based models are attracting increasing interest since they are more efficient. On the other hand,since there isn't any widely acknowledged automatic evaluation metric designed for question generation, researchers adopt metrics of other natural language processing tasks to compare different systems.
References used
https://aclanthology.org/
Deep neural networks and huge language models are becoming omnipresent in natural language applications. As they are known for requiring large amounts of training data, there is a growing body of work to improve the performance in low-resource settin
Finding the year of writing for a historical text is of crucial importance to historical research. However, the year of original creation is rarely explicitly stated and must be inferred from the text content, historical records, and codicological cl
Information extraction is the task of finding structured information
from unstructured or semi-structured text. It is an important task in
text mining and has been extensively studied in various research
communities including natural language proc
Natural question generation (QG) aims to generate questions from a passage, and generated questions are answered from the passage. Most models with state-of-the-art performance model the previously generated text at each decoding step. However, (1) t
Meeting minutes record any subject matter discussed, decisions reached and actions taken at the meeting. The importance of automatic minuting cannot be overstated. In this paper, we present a sliding window approach to automatic generation of meeting