تستكشف هذه الورقة استمرار القصة التي يحركها الشخصية، حيث تظهر القصة من خلال سرد الشخصيات الأول والثاني بالإضافة إلى الحوار - - - - تتطلب النماذج لتحديد اللغة التي تتفق مع شخصيات الشخصية وعلاقاتها مع أحرف أخرى التالية وتقدم القصة. نحن نفترض أن نموذج متعدد المهام الذي يتدرب على حوار الأحرف بالإضافة إلى معلومات علاقة الشخصية يحسن استمرار القصة المستندة إلى المحولات. تحقيقا لهذه الغاية، نقوم بتوسيع دور محصنة الدوران والتنين الحاسم (Rameshkumar و Bailey، 2020) --- تتكون من نصوص الحوار من الأشخاص الذين يخبرون بشكل تعاظم قصة أثناء لعب لعبة الأبراج المحصنة والتنينات --- مع العلاقات المستخرجة تلقائيا بين كل زوج من الشخصيات التفاعل وكذلك شخصياتهم. تقدم سلسلة من الوضوح دليلا على فرضيتنا، حيث أظهر أن نموذجنا متعدد المهام لدينا باستخدام علاقات الأحرف يحسن دقة استمرار القصة على خطوط خطوط خطوط خطوط خطوط طويلة.
This paper explores character-driven story continuation, in which the story emerges through characters' first- and second-person narration as well as dialogue---requiring models to select language that is consistent with a character's persona and their relationships with other characters while following and advancing the story. We hypothesize that a multi-task model that trains on character dialogue plus character relationship information improves transformer-based story continuation. To this end, we extend the Critical Role Dungeons and Dragons Dataset (Rameshkumar and Bailey, 2020)---consisting of dialogue transcripts of people collaboratively telling a story while playing the role-playing game Dungeons and Dragons---with automatically extracted relationships between each pair of interacting characters as well as their personas. A series of ablations lend evidence to our hypothesis, showing that our multi-task model using character relationships improves story continuation accuracy over strong baselines.
References used
https://aclanthology.org/
Dialogue state tracking models play an important role in a task-oriented dialogue system. However, most of them model the slot types conditionally independently given the input. We discover that it may cause the model to be confused by slot types tha
Identifying relevant knowledge to be used in conversational systems that are grounded in long documents is critical to effective response generation. We introduce a knowledge identification model that leverages the document structure to provide dialo
With the rapid increase in the volume of dialogue data from daily life, there is a growing demand for dialogue summarization. Unfortunately, training a large summarization model is generally infeasible due to the inadequacy of dialogue data with anno
Though word embeddings and topics are complementary representations, several past works have only used pretrained word embeddings in (neural) topic modeling to address data sparsity in short-text or small collection of documents. This work presents a
Production NMT systems typically need to serve niche domains that are not covered by adequately large and readily available parallel corpora. As a result, practitioners often fine-tune general purpose models to each of the domains their organisation