Do you want to publish a course? Click here

Towards Continuous Estimation of Dissatisfaction in Spoken Dialog

نحو تقدير مستمر لعدم الرضا في الحوار المنطوق

241   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We collected a corpus of human-human task-oriented dialogs rich in dissatisfaction and built a model that used prosodic features to predict when the user was likely dissatisfied. For utterances this attained a F.25 score of 0.62,against a baseline of 0.39. Based on qualitative observations and failure analysis, we discuss likely ways to improve this result to make it have practical utility.



References used
https://aclanthology.org/
rate research

Read More

While named entity recognition (NER) from speech has been around as long as NER from written text has, the accuracy of NER from speech has generally been much lower than that of NER from text. The rise in popularity of spoken dialog systems such as S iri or Alexa highlights the need for more accurate NER from speech because NER is a core component for understanding what users said in dialogs. Deployed spoken dialog systems receive user input in the form of automatic speech recognition (ASR) transcripts, and simply applying NER model trained on written text to ASR transcripts often leads to low accuracy because compared to written text, ASR transcripts lack important cues such as punctuation and capitalization. Besides, errors in ASR transcripts also make NER from speech challenging. We propose two models that exploit dialog context and speech pattern clues to extract named entities more accurately from open-domain dialogs in spoken dialog systems. Our results show the benefit of modeling dialog context and speech patterns in two settings: a standard setting with random partition of data and a more realistic but also more difficult setting where many named entities encountered during deployment are unseen during training.
In this paper we argue that to make dialogue systems able to actively explain their decisions they can make use of enthymematic reasoning. We motivate why this is an appropriate strategy and integrate it within our own proof-theoretic dialogue manage r framework based on linear logic. In particular, this enables a dialogue system to provide reasonable answers to why-questions that query information previously given by the system.
Reliable automatic evaluation of dialogue systems under an interactive environment has long been overdue. An ideal environment for evaluating dialog systems, also known as the Turing test, needs to involve human interaction, which is usually not affo rdable for large-scale experiments. Though researchers have attempted to use metrics for language generation tasks (e.g., perplexity, BLEU) or some model-based reinforcement learning methods (e.g., self-play evaluation) for automatic evaluation, these methods only show very weak correlation with the actual human evaluation in practice. To bridge such a gap, we propose a new framework named ENIGMA for estimating human evaluation scores based on recent advances of off-policy evaluation in reinforcement learning. ENIGMA only requires a handful of pre-collected experience data, and therefore does not involve human interaction with the target policy during the evaluation, making automatic evaluations feasible. More importantly, ENIGMA is model-free and agnostic to the behavior policies for collecting the experience data, which significantly alleviates the technical difficulties of modeling complex dialogue environments and human behaviors. Our experiments show that ENIGMA significantly outperforms existing methods in terms of correlation with human evaluation scores.
Being able to accurately perform Question Difficulty Estimation (QDE) can improve the accuracy of students' assessment and better their learning experience. Traditional approaches to QDE are either subjective or introduce a long delay before new ques tions can be used to assess students. Thus, recent work proposed machine learning-based approaches to overcome these limitations. They use questions of known difficulty to train models capable of inferring the difficulty of questions from their text. Once trained, they can be used to perform QDE of newly created questions. Existing approaches employ supervised models which are domain-dependent and require a large dataset of questions of known difficulty for training. Therefore, they cannot be used if such a dataset is not available ( for new courses on an e-learning platform). In this work, we experiment with the possibility of performing QDE from text in an unsupervised manner. Specifically, we use the uncertainty of calibrated question answering models as a proxy of human-perceived difficulty. Our experiments show promising results, suggesting that model uncertainty could be successfully leveraged to perform QDE from text, reducing both costs and elapsed time.
For each goal-oriented dialog task of interest, large amounts of data need to be collected for end-to-end learning of a neural dialog system. Collecting that data is a costly and time-consuming process. Instead, we show that we can use only a small a mount of data, supplemented with data from a related dialog task. Naively learning from related data fails to improve performance as the related data can be inconsistent with the target task. We describe a meta-learning based method that selectively learns from the related dialog task data. Our approach leads to significant accuracy improvements in an example dialog task.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا