Do you want to publish a course? Click here

Training Strategies for Neural Multilingual Morphological Inflection

استراتيجيات تدريب الانعكاسات المورفولوجية متعددة اللغات

106   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper presents the submission of team GUCLASP to SIGMORPHON 2021 Shared Task on Generalization in Morphological Inflection Generation. We develop a multilingual model for Morphological Inflection and primarily focus on improving the model by using various training strategies to improve accuracy and generalization across languages.

References used
https://aclanthology.org/
rate research

Read More

Low-resource Multilingual Neural Machine Translation (MNMT) is typically tasked with improving the translation performance on one or more language pairs with the aid of high-resource language pairs. In this paper and we propose two simple search base d curricula -- orderings of the multilingual training data -- which help improve translation performance in conjunction with existing techniques such as fine-tuning. Additionally and we attempt to learn a curriculum for MNMT from scratch jointly with the training of the translation system using contextual multi-arm bandits. We show on the FLORES low-resource translation dataset that these learned curricula can provide better starting points for fine tuning and improve overall performance of the translation system.
Learning multilingual and multi-domain translation model is challenging as the heterogeneous and imbalanced data make the model converge inconsistently over different corpora in real world. One common practice is to adjust the share of each corpus in the training, so that the learning process is balanced and low-resource cases can benefit from the high resource ones. However, automatic balancing methods usually depend on the intra- and inter-dataset characteristics, which is usually agnostic or requires human priors. In this work, we propose an approach, MultiUAT, that dynamically adjusts the training data usage based on the model's uncertainty on a small set of trusted clean data for multi-corpus machine translation. We experiments with two classes of uncertainty measures on multilingual (16 languages with 4 settings) and multi-domain settings (4 for in-domain and 2 for out-of-domain on English-German translation) and demonstrate our approach MultiUAT substantially outperforms its baselines, including both static and dynamic strategies. We analyze the cross-domain transfer and show the deficiency of static and similarity based methods.
Backtranslation is a common technique for leveraging unlabeled data in low-resource scenarios in machine translation. The method is directly applicable to morphological inflection generation if unlabeled word forms are available. This paper evaluates the potential of backtranslation for morphological inflection using data from six languages with labeled data drawn from the SIGMORPHON shared task resource and unlabeled data from different sources. Our core finding is that backtranslation can offer modest improvements in low-resource scenarios, but only if the unlabeled data is very clean and has been filtered by the same annotation standards as the labeled data.
We present the BME submission for the SIGMORPHON 2021 Task 0 Part 1, Generalization Across Typologically Diverse Languages shared task. We use an LSTM encoder-decoder model with three step training that is first trained on all languages, then fine-tu ned on each language family and finally fine-tuned on individual languages. We use a different type of data augmentation technique in the first two steps. Our system outperformed the only other submission. Although it remains worse than the Transformer baseline released by the organizers, our model is simpler and our data augmentation techniques are easily applicable to new languages. We perform ablation studies and show that the augmentation techniques and the three training steps often help but sometimes have a negative effect. Our code is publicly available.
This paper studies zero-shot cross-lingual transfer of vision-language models. Specifically, we focus on multilingual text-to-video search and propose a Transformer-based model that learns contextual multilingual multimodal embeddings. Under a zero-s hot setting, we empirically demonstrate that performance degrades significantly when we query the multilingual text-video model with non-English sentences. To address this problem, we introduce a multilingual multimodal pre-training strategy, and collect a new multilingual instructional video dataset (Multi-HowTo100M) for pre-training. Experiments on VTT show that our method significantly improves video search in non-English languages without additional annotations. Furthermore, when multilingual annotations are available, our method outperforms recent baselines by a large margin in multilingual text-to-video search on VTT and VATEX; as well as in multilingual text-to-image search on Multi30K. Our model and Multi-HowTo100M is available at http://github.com/berniebear/Multi-HT100M.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا