Do you want to publish a course? Click here

Improving the Performance of UDify with Linguistic Typology Knowledge

تحسين أداء Udify مع المعرفة النمطية اللغوية

281   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

UDify is the state-of-the-art language-agnostic dependency parser which is trained on a polyglot corpus of 75 languages. This multilingual modeling enables the model to generalize over unknown/lesser-known languages, thus leading to improved performance on low-resource languages. In this work we used linguistic typology knowledge available in URIEL database, to improve the cross-lingual transferring ability of UDify even further.



References used
https://aclanthology.org/
rate research

Read More

We describe the NUIG solution for IWPT 2021 Shared Task of Enhanced Dependency (ED) parsing in multiple languages. For this shared task, we propose and evaluate an End-to-end Seq2seq mBERT-based ED parser which predicts the ED-parse tree of a given i nput sentence as a relative head-position tag-sequence. Our proposed model is a multitasking neural-network which performs five key tasks simultaneously namely UPOS tagging, UFeat tagging, Lemmatization, Dependency-parsing and ED-parsing. Furthermore we utilise the linguistic typology available in the WALS database to improve the ability of our proposed end-to-end parser to transfer across languages. Results show that our proposed Seq2seq ED-parser performs on par with state-of-the-art ED-parser despite having a much simpler de- sign.
This paper documents the UBC Linguistics team's approach to the SIGMORPHON 2021 Grapheme-to-Phoneme Shared Task, concentrating on the low-resource setting. Our systems expand the baseline model with simple modifications informed by syllable structure and error analysis. In-depth investigation of test-set predictions shows that our best model rectifies a significant number of mistakes compared to the baseline prediction, besting all other submissions. Our results validate the view that careful error analysis in conjunction with linguistic knowledge can lead to more effective computational modeling.
We introduce Classification with Alternating Normalization (CAN), a non-parametric post-processing step for classification. CAN improves classification accuracy for challenging examples by re-adjusting their predicted class probability distribution u sing the predicted class distributions of high-confidence validation examples. CAN is easily applicable to any probabilistic classifier, with minimal computation overhead. We analyze the properties of CAN using simulated experiments, and empirically demonstrate its effectiveness across a diverse set of classification tasks.
Large scale pretrained models have demonstrated strong performances on several natural language generation and understanding benchmarks. However, introducing commonsense into them to generate more realistic text remains a challenge. Inspired from pre vious work on commonsense knowledge generation and generative commonsense reasoning, we introduce two methods to add commonsense reasoning skills and knowledge into abstractive summarization models. Both methods beat the baseline on ROUGE scores, demonstrating the superiority of our models over the baseline. Human evaluation results suggest that summaries generated by our methods are more realistic and have fewer commonsensical errors.
Network coding isone of the important researches in multi-hop wireless networks domain and it widely participates in improving the performance of these networks, since it benefits from the broadcasting nature of transmission processes to transmit m ore than single packet in one broadcasting transmission. So it achieves double use of the available bandwidth, which can increase the throughput of the network and reduce the congestion.Our aim in this research is to verify the improvement that network coding presents to theperformance of multi-hops wireless Ad-hoc networks, and to study the accelerating of research process for coding chances through constructing a virtual queues according to the packets flows that pass the node, and applying affective manner to manage this queues.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا