Do you want to publish a course? Click here

Improving Abstractive Summarization with Commonsense Knowledge

تحسين تلخيص الجماعي مع معرفة المنطقية

263   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Large scale pretrained models have demonstrated strong performances on several natural language generation and understanding benchmarks. However, introducing commonsense into them to generate more realistic text remains a challenge. Inspired from previous work on commonsense knowledge generation and generative commonsense reasoning, we introduce two methods to add commonsense reasoning skills and knowledge into abstractive summarization models. Both methods beat the baseline on ROUGE scores, demonstrating the superiority of our models over the baseline. Human evaluation results suggest that summaries generated by our methods are more realistic and have fewer commonsensical errors.



References used
https://aclanthology.org/
rate research

Read More

With the increasing abundance of meeting transcripts, meeting summary has attracted more and more attention from researchers. The unsupervised pre-training method based on transformer structure combined with fine-tuning of downstream tasks has achiev ed great success in the field of text summarization. However, the semantic structure and style of meeting transcripts are quite different from that of articles. In this work, we propose a hierarchical transformer encoder-decoder network with multi-task pre-training. Specifically, we mask key sentences at the word-level encoder and generate them at the decoder. Besides, we randomly mask some of the role alignments in the input text and force the model to recover the original role tags to complete the alignments. In addition, we introduce a topic segmentation mechanism to further improve the quality of the generated summaries. The experimental results show that our model is superior to the previous methods in meeting summary datasets AMI and ICSI.
Despite significant progress in neural abstractive summarization, recent studies have shown that the current models are prone to generating summaries that are unfaithful to the original context. To address the issue, we study contrast candidate gener ation and selection as a model-agnostic post-processing technique to correct the extrinsic hallucinations (i.e. information not present in the source text) in unfaithful summaries. We learn a discriminative correction model by generating alternative candidate summaries where named entities and quantities in the generated summary are replaced with ones with compatible semantic types from the source document. This model is then used to select the best candidate as the final output summary. Our experiments and analysis across a number of neural summarization systems show that our proposed method is effective in identifying and correcting extrinsic hallucinations. We analyze the typical hallucination phenomenon by different types of neural summarization systems, in hope to provide insights for future work on the direction.
Neural sequence-to-sequence (Seq2Seq) models and BERT have achieved substantial improvements in abstractive document summarization (ADS) without and with pre-training, respectively. However, they sometimes repeatedly attend to unimportant source phra ses while mistakenly ignore important ones. We present reconstruction mechanisms on two levels to alleviate this issue. The sequence-level reconstructor reconstructs the whole document from the hidden layer of the target summary, while the word embedding-level one rebuilds the average of word embeddings of the source at the target side to guarantee that as much critical information is included in the summary as possible. Based on the assumption that inverse document frequency (IDF) measures how important a word is, we further leverage the IDF weights in our embedding-level reconstructor. The proposed frameworks lead to promising improvements for ROUGE metrics and human rating on both the CNN/Daily Mail and Newsroom summarization datasets.
A hyperbole is an intentional and creative exaggeration not to be taken literally. Despite its ubiquity in daily life, the computational explorations of hyperboles are scarce. In this paper, we tackle the under-explored and challenging task: sentence -level hyperbole generation. We start with a representative syntactic pattern for intensification and systematically study the semantic (commonsense and counterfactual) relationships between each component in such hyperboles. We then leverage commonsense and counterfactual inference to generate hyperbole candidates based on our findings from the pattern, and train neural classifiers to rank and select high-quality hyperboles. Automatic and human evaluations show that our generation method is able to generate hyperboles with high success rate, intensity, funniness, and creativity.
In this paper, we study the abstractive sentence summarization. There are two essential information features that can influence the quality of news summarization, which are topic keywords and the knowledge structure of the news text. Besides, the exi sting knowledge encoder has poor performance on sparse sentence knowledge structure. Considering these, we propose KAS, a novel Knowledge and Keywords Augmented Abstractive Sentence Summarization framework. Tri-encoders are utilized to integrate contexts of original text, knowledge structure and keywords topic simultaneously, with a special linearized knowledge structure. Automatic and human evaluations demonstrate that KAS achieves the best performances.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا