Do you want to publish a course? Click here

Large-scale auto-regressive models have achieved great success in dialogue response generation, with the help of Transformer layers. However, these models do not learn a representative latent space of the sentence distribution, making it hard to cont rol the generation. Recent works have tried on learning sentence representations using Transformer-based framework, but do not model the context-response relationship embedded in the dialogue datasets. In this work, we aim to construct a robust sentence representation learning model, that is specifically designed for dialogue response generation, with Transformer-based encoder-decoder structure. An utterance-level contrastive learning is proposed, encoding predictive information in each context representation for its corresponding response. Extensive experiments are conducted to verify the robustness of the proposed representation learning mechanism. By using both reference-based and reference-free evaluation metrics, we provide detailed analysis on the generated sentences, demonstrating the effectiveness of our proposed model.
Query rewrite (QR) is an emerging component in conversational AI systems, reducing user defect. User defect is caused by various reasons, such as errors in the spoken dialogue system, users' slips of the tongue or their abridged language. Many of the user defects stem from personalized factors, such as user's speech pattern, dialect, or preferences. In this work, we propose a personalized search-based QR framework, which focuses on automatic reduction of user defect. We build a personalized index for each user, which encompasses diverse affinity layers to reflect personal preferences for each user in the conversational AI. Our personalized QR system contains retrieval and ranking layers. Supported by user feedback based learning, training our models does not require hand-annotated data. Experiments on personalized test set showed that our personalized QR system is able to correct systematic and user errors by utilizing phonetic and semantic inputs.
Most of the existing Knowledge-based Question Answering (KBQA) methods first learn to map the given question to a query graph, and then convert the graph to an executable query to find the answer. The query graph is typically expanded progressively f rom the topic entity based on a sequence prediction model. In this paper, we propose a new solution to query graph generation that works in the opposite manner: we start with the entire knowledge base and gradually shrink it to the desired query graph. This approach improves both the efficiency and the accuracy of query graph generation, especially for complex multi-hop questions. Experimental results show that our method achieves state-of-the-art performance on ComplexWebQuestion (CWQ) dataset.
Natural-language prompts have recently been used to coax pretrained language models into performing other AI tasks, using a fill-in-the-blank paradigm (Petroni et al., 2019) or a few-shot extrapolation paradigm (Brown et al., 2020). For example, lang uage models retain factual knowledge from their training corpora that can be extracted by asking them to fill in the blank'' in a sentential prompt. However, where does this prompt come from? We explore the idea of learning prompts by gradient descent---either fine-tuning prompts taken from previous work, or starting from random initialization. Our prompts consist of soft words,'' i.e., continuous vectors that are not necessarily word type embeddings from the language model. Furthermore, for each task, we optimize a mixture of prompts, learning which prompts are most effective and how to ensemble them. Across multiple English LMs and tasks, our approach hugely outperforms previous methods, showing that the implicit factual knowledge in language models was previously underestimated. Moreover, this knowledge is cheap to elicit: random initialization is nearly as good as informed initialization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا