Do you want to publish a course? Click here

Learning to Selectively Learn for Weakly-supervised Paraphrase Generation

تعلم تعلم انتقائي لتوليد إعادة صياغة الإشراف ضعيف

204   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Paraphrase generation is a longstanding NLP task that has diverse applications on downstream NLP tasks. However, the effectiveness of existing efforts predominantly relies on large amounts of golden labeled data. Though unsupervised endeavors have been proposed to alleviate this issue, they may fail to generate meaningful paraphrases due to the lack of supervision signals. In this work, we go beyond the existing paradigms and propose a novel approach to generate high-quality paraphrases with data of weak supervision. Specifically, we tackle the weakly-supervised paraphrase generation problem by: (1) obtaining abundant weakly-labeled parallel sentences via retrieval-based pseudo paraphrase expansion; and (2) developing a meta-learning framework to progressively select valuable samples for fine-tuning a pre-trained language model BART on the sentential paraphrasing task. We demonstrate that our approach achieves significant improvements over existing unsupervised approaches, and is even comparable in performance with supervised state-of-the-arts.

References used
https://aclanthology.org/
rate research

Read More

An intelligent dialogue system in a multi-turn setting should not only generate the responses which are of good quality, but it should also generate the responses which can lead to long-term success of the dialogue. Although, the current approaches i mproved the response quality, but they over-look the training signals present in the dialogue data. We can leverage these signals to generate the weakly supervised training data for learning dialog policy and reward estimator, and make the policy take actions (generates responses) which can foresee the future direction for a successful (rewarding) conversation. We simulate the dialogue between an agent and a user (modelled similar to an agent with supervised learning objective) to interact with each other. The agent uses dynamic blocking to generate ranked diverse responses and exploration-exploitation to select among the Top-K responses. Each simulated state-action pair is evaluated (works as a weak annotation) with three quality modules: Semantic Relevant, Semantic Coherence and Consistent Flow. Empirical studies with two benchmarks indicate that our model can significantly out-perform the response quality and lead to a successful conversation on both automatic evaluation and human judgment.
Improving model generalization on held-out data is one of the core objectives in common- sense reasoning. Recent work has shown that models trained on the dataset with superficial cues tend to perform well on the easy test set with superficial cues b ut perform poorly on the hard test set without superficial cues. Previous approaches have resorted to manual methods of encouraging models not to overfit to superficial cues. While some of the methods have improved performance on hard instances, they also lead to degraded performance on easy in- stances. Here, we propose to explicitly learn a model that does well on both the easy test set with superficial cues and the hard test set without superficial cues. Using a meta-learning objective, we learn such a model that improves performance on both the easy test set and the hard test set. By evaluating our models on Choice of Plausible Alternatives (COPA) and Commonsense Explanation, we show that our proposed method leads to improved performance on both the easy test set and the hard test set upon which we observe up to 16.5 percentage points improvement over the baseline.
An important task in NLP applications such as sentence simplification is the ability to take a long, complex sentence and split it into shorter sentences, rephrasing as necessary. We introduce a novel dataset and a new model for this split and rephra se' task. Our BiSECT training data consists of 1 million long English sentences paired with shorter, meaning-equivalent English sentences. We obtain these by extracting 1-2 sentence alignments in bilingual parallel corpora and then using machine translation to convert both sides of the corpus into the same language. BiSECT contains higher quality training examples than the previous Split and Rephrase corpora, with sentence splits that require more significant modifications. We categorize examples in our corpus and use these categories in a novel model that allows us to target specific regions of the input sentence to be split and edited. Moreover, we show that models trained on BiSECT can perform a wider variety of split operations and improve upon previous state-of-the-art approaches in automatic and human evaluations.
Exemplar-Guided Paraphrase Generation (EGPG) aims to generate a target sentence which conforms to the style of the given exemplar while encapsulating the content information of the source sentence. In this paper, we propose a new method with the goal of learning a better representation of the style and the content. This method is mainly motivated by the recent success of contrastive learning which has demonstrated its power in unsupervised feature extraction tasks. The idea is to design two contrastive losses with respect to the content and the style by considering two problem characteristics during training. One characteristic is that the target sentence shares the same content with the source sentence, and the second characteristic is that the target sentence shares the same style with the exemplar. These two contrastive losses are incorporated into the general encoder-decoder paradigm. Experiments on two datasets, namely QQP-Pos and ParaNMT, demonstrate the effectiveness of our proposed constrastive losses.
Existing supervised models for text clustering find it difficult to directly optimize for clustering results. This is because clustering is a discrete process and it is difficult to estimate meaningful gradient of any discrete function that can drive gradient based optimization algorithms. So, existing supervised clustering algorithms indirectly optimize for some continuous function that approximates the clustering process. We propose a scalable training strategy that directly optimizes for a discrete clustering metric. We train a BERT-based embedding model using our method and evaluate it on two publicly available datasets. We show that our method outperforms another BERT-based embedding model employing Triplet loss and other unsupervised baselines. This suggests that optimizing directly for the clustering outcome indeed yields better representations suitable for clustering.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا