تصف هذه الورقة أن اللغويات الحاسوبية الدراسات الأولية والمناهج الخليجية في جامعة جورج تاون، وهي جامعة أمريكية شهدت نموا كبيرا في هذه المجالات في السنوات الأخيرة.نحن نفكر في المبادئ وراء اختيارات المناهج الدراسية، بما في ذلك الاعتراف بالمختلف الخلفيات الأكاديمية وأهداف طلابنا؛تدريس مجموعة متنوعة من المهارات مع التركيز على العمل مباشرة مع البيانات؛تشجيع التعاون والعمل متعدد التخصصات؛بما في ذلك اللغات وراء اللغة الإنجليزية.نحن نفكر في التحديات التي واجهناها، مثل صعوبة تدريس مهارات البرمجة إلى جانب أساسيات NLP، ومناقشة المناطق للنمو في المستقبل.
This paper describes the primarily-graduate computational linguistics and NLP curriculum at Georgetown University, a U.S. university that has seen significant growth in these areas in recent years. We reflect on the principles behind our curriculum choices, including recognizing the various academic backgrounds and goals of our students; teaching a variety of skills with an emphasis on working directly with data; encouraging collaboration and interdisciplinary work; and including languages beyond English. We reflect on challenges we have encountered, such as the difficulty of teaching programming skills alongside NLP fundamentals, and discuss areas for future growth.
References used
https://aclanthology.org/
The Electromagnetic Interference and EMC are one important phenomenon, since the EMI
causes degradation in the performance of electric and electronic instruments.
The EMI- problem may decrease effectiveness of sensitive devices and even may lead to
NLP's sphere of influence went much beyond computer science research and the development of software applications in the past decade. We see people using NLP methods in a range of academic disciplines from Asian Studies to Clinical Oncology. We also
Finding the year of writing for a historical text is of crucial importance to historical research. However, the year of original creation is rarely explicitly stated and must be inferred from the text content, historical records, and codicological cl
Currently, multilingual machine translation is receiving more and more attention since it brings better performance for low resource languages (LRLs) and saves more space. However, existing multilingual machine translation models face a severe challe
Recent works have found evidence of gender bias in models of machine translation and coreference resolution using mostly synthetic diagnostic datasets. While these quantify bias in a controlled experiment, they often do so on a small scale and consis