الطرق الحالية لتمثيل الأحداث تجاهل الأحداث ذات الصلة في السياق العالمي على مستوى كوربوس.لفهم عميق وشامل للأحداث المعقدة، نقدم مهمة جديدة، وتضمين شبكة الأحداث، والتي تهدف إلى تمثيل الأحداث من خلال التقاط الاتصالات بين الأحداث.نقترح إطارا جديدا، وتضمين شبكة الحدث العالمي (جين)، الذي يرمز شبكة الحدث مع تشفير رسم بياني متعدد المشتريات مع الحفاظ على طوبولوجيا الرسم البياني وعلم العقدة.يتم تدريب تشفير الرسم البياني عن طريق تقليل كل من الخسائر الهيكلية والدلالية.نحن نطور سلسلة جديدة من المهام التحقيق المهيكلية، وإظهار أن نهجنا يفوق بشكل فعال على نماذج خط الأساس على كتابة العقدة، وتصنيف دور الوسيطة، وقضية كور معلومات الحدث.
Current methods for event representation ignore related events in a corpus-level global context. For a deep and comprehensive understanding of complex events, we introduce a new task, Event Network Embedding, which aims to represent events by capturing the connections among events. We propose a novel framework, Global Event Network Embedding (GENE), that encodes the event network with a multi-view graph encoder while preserving the graph topology and node semantics. The graph encoder is trained by minimizing both structural and semantic losses. We develop a new series of structured probing tasks, and show that our approach effectively outperforms baseline models on node typing, argument role classification, and event coreference resolution.
References used
https://aclanthology.org/
Event detection (ED) aims at identifying event instances of specified types in given texts, which has been formalized as a sequence labeling task. As far as we know, existing neural-based ED models make decisions relying entirely on the contextual se
Modeling solar radiation consider one of important and helpful
matter in researches in generation an electric power from solar
cells.
Researchers interested in this subject and put number of
mathematical models to modeling solar radiation.
In th
Sentence fusion is a conditional generation task that merges several related sentences into a coherent one, which can be deemed as a summary sentence. The importance of sentence fusion has long been recognized by communities in natural language gener
Abstract We present a new conjunctivist framework, neural event semantics (NES), for compositional grounded language understanding. Our approach treats all words as classifiers that compose to form a sentence meaning by multiplying output scores. The
Understanding natural language requires common sense, one aspect of which is the ability to discern the plausibility of events. While distributional models---most recently pre-trained, Transformer language models---have demonstrated improvements in m