Do you want to publish a course? Click here

Hierarchical Transformer for Multilingual Machine Translation

محول هرمي للترجمة متعددة اللغات

492   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The choice of parameter sharing strategy in multilingual machine translation models determines how optimally parameter space is used and hence, directly influences ultimate translation quality. Inspired by linguistic trees that show the degree of relatedness between different languages, the new general approach to parameter sharing in multilingual machine translation was suggested recently. The main idea is to use these expert language hierarchies as a basis for multilingual architecture: the closer two languages are, the more parameters they share. In this work, we test this idea using the Transformer architecture and show that despite the success in previous work there are problems inherent to training such hierarchical models. We demonstrate that in case of carefully chosen training strategy the hierarchical architecture can outperform bilingual models and multilingual models with full parameter sharing.



References used
https://aclanthology.org/
rate research

Read More

Document-level neural machine translation (NMT) has proven to be of profound value for its effectiveness on capturing contextual information. Nevertheless, existing approaches 1) simply introduce the representations of context sentences without expli citly characterizing the inter-sentence reasoning process; and 2) feed ground-truth target contexts as extra inputs at the training time, thus facing the problem of exposure bias. We approach these problems with an inspiration from human behavior -- human translators ordinarily emerge a translation draft in their mind and progressively revise it according to the reasoning in discourse. To this end, we propose a novel Multi-Hop Transformer (MHT) which offers NMT abilities to explicitly model the human-like draft-editing and reasoning process. Specifically, our model serves the sentence-level translation as a draft and properly refines its representations by attending to multiple antecedent sentences iteratively. Experiments on four widely used document translation tasks demonstrate that our method can significantly improve document-level translation performance and can tackle discourse phenomena, such as coreference error and the problem of polysemy.
Developing a unified multilingual model has been a long pursuing goal for machine translation. However, existing approaches suffer from performance degradation - a single multilingual model is inferior to separately trained bilingual ones on rich-res ource languages. We conjecture that such a phenomenon is due to interference brought by joint training with multiple languages. To accommodate the issue, we propose CIAT, an adapted Transformer model with a small parameter overhead for multilingual machine translation. We evaluate CIAT on multiple benchmark datasets, including IWSLT, OPUS-100, and WMT. Experiments show that the CIAT consistently outperforms strong multilingual baselines on 64 of total 66 language directions, 42 of which have above 0.5 BLEU improvement.
Generative models for dialog systems have gained much interest because of the recent success of RNN and Transformer based models in tasks like question answering and summarization. Although the task of dialog response generation is generally seen as a sequence to sequence (Seq2Seq) problem, researchers in the past have found it challenging to train dialog systems using the standard Seq2Seq models. Therefore, to help the model learn meaningful utterance and conversation level features, Sordoni et al. (2015b), Serban et al. (2016) proposed Hierarchical RNN architecture, which was later adopted by several other RNN based dialog systems. With the transformer-based models dominating the seq2seq problems lately, the natural question to ask is the applicability of the notion of hierarchy in transformer-based dialog systems. In this paper, we propose a generalized framework for Hierarchical Transformer Encoders and show how a standard transformer can be morphed into any hierarchical encoder, including HRED and HIBERT like models, by using specially designed attention masks and positional encodings. We demonstrate that Hierarchical Encoding helps achieve better natural language understanding of the contexts in transformer-based models for task-oriented dialog systems through a wide range of experiments.
In this paper, we present the details of the systems that we have submitted for the WAT 2021 MultiIndicMT: An Indic Language Multilingual Task. We have submitted two separate multilingual NMT models: one for English to 10 Indic languages and another for 10 Indic languages to English. We discuss the implementation details of two separate multilingual NMT approaches, namely one-to-many and many-to-one, that makes use of a shared decoder and a shared encoder, respectively. From our experiments, we observe that the multilingual NMT systems outperforms the bilingual baseline MT systems for each of the language pairs under consideration.
It has been widely recognized that syntax information can help end-to-end neural machine translation (NMT) systems to achieve better translation. In order to integrate dependency information into Transformer based NMT, existing approaches either expl oit words' local head-dependent relations, ignoring their non-local neighbors carrying important context; or approximate two words' syntactic relation by their relative distance on the dependency tree, sacrificing exactness. To address these issues, we propose global positional encoding for dependency tree, a new scheme that facilitates syntactic relation modeling between any two words with keeping exactness and without immediate neighbor constraint. Experiment results on NC11 German→English, English→German and WMT English→German datasets show that our approach is more effective than the above two strategies. In addition, our experiments quantitatively show that compared with higher layers, lower layers of the model are more proper places to incorporate syntax information in terms of each layer's preference to the syntactic pattern and the final performance.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا