تطوير نموذج متعدد اللغات موحدة كان هدف متابعة طويلا للترجمة الآلية.ومع ذلك، فإن الأساليب الحالية تعاني من تدهور الأداء - نموذج واحد متعدد اللغات أدنى من المتدربين بشكل منفصل ثنائي اللغة على لغات الموارد الغنية.نحن نقوم بالتخمين أن مثل هذه الظاهرة من المقرر أن تدخل جلبت عن طريق التدريب المشترك مع لغات متعددة.لاستيعاب المشكلة، نقترح CAIT، وهو نموذج محول تكييف مع معلمة صغيرة للنفقات العامة للترجمة الآلية متعددة اللغات.نقيم CAIT على مجموعات بيانات معيار متعددة، بما في ذلك IWSLT، OPUS-100، و WMT.تشير التجارب إلى أن CAIT تتفوق باستمرار على خطوط أساسية قوية متعددة اللغات في 64 من إجمالي 66 اتجاهات لغة، 42 منها أعلى من 0.5 تحسين بلو.
Developing a unified multilingual model has been a long pursuing goal for machine translation. However, existing approaches suffer from performance degradation - a single multilingual model is inferior to separately trained bilingual ones on rich-resource languages. We conjecture that such a phenomenon is due to interference brought by joint training with multiple languages. To accommodate the issue, we propose CIAT, an adapted Transformer model with a small parameter overhead for multilingual machine translation. We evaluate CIAT on multiple benchmark datasets, including IWSLT, OPUS-100, and WMT. Experiments show that the CIAT consistently outperforms strong multilingual baselines on 64 of total 66 language directions, 42 of which have above 0.5 BLEU improvement.
References used
https://aclanthology.org/
The choice of parameter sharing strategy in multilingual machine translation models determines how optimally parameter space is used and hence, directly influences ultimate translation quality. Inspired by linguistic trees that show the degree of rel
Low-resource Multilingual Neural Machine Translation (MNMT) is typically tasked with improving the translation performance on one or more language pairs with the aid of high-resource language pairs. In this paper and we propose two simple search base
Currently, multilingual machine translation is receiving more and more attention since it brings better performance for low resource languages (LRLs) and saves more space. However, existing multilingual machine translation models face a severe challe
In this paper, we present the details of the systems that we have submitted for the WAT 2021 MultiIndicMT: An Indic Language Multilingual Task. We have submitted two separate multilingual NMT models: one for English to 10 Indic languages and another
Neural machine translation based on bilingual text with limited training data suffers from lexical diversity, which lowers the rare word translation accuracy and reduces the generalizability of the translation system. In this work, we utilise the mul