Do you want to publish a course? Click here

Contrastive Learning for Context-aware Neural Machine Translation Using Coreference Information

التعلم النقيض من أجل الترجمة الآلية المعالجة في السياق باستخدام معلومات Aquerence

341   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Context-aware neural machine translation (NMT) incorporates contextual information of surrounding texts, that can improve the translation quality of document-level machine translation. Many existing works on context-aware NMT have focused on developing new model architectures for incorporating additional contexts and have shown some promising results. However, most of existing works rely on cross-entropy loss, resulting in limited use of contextual information. In this paper, we propose CorefCL, a novel data augmentation and contrastive learning scheme based on coreference between the source and contextual sentences. By corrupting automatically detected coreference mentions in the contextual sentence, CorefCL can train the model to be sensitive to coreference inconsistency. We experimented with our method on common context-aware NMT models and two document-level translation tasks. In the experiments, our method consistently improved BLEU of compared models on English-German and English-Korean tasks. We also show that our method significantly improves coreference resolution in the English-German contrastive test suite.



References used
https://aclanthology.org/
rate research

Read More

In this paper, we describe our MiSS system that participated in the WMT21 news translation task. We mainly participated in the evaluation of the three translation directions of English-Chinese and Japanese-English translation tasks. In the systems su bmitted, we primarily considered wider networks, deeper networks, relative positional encoding, and dynamic convolutional networks in terms of model structure, while in terms of training, we investigated contrastive learning-reinforced domain adaptation, self-supervised training, and optimization objective switching training methods. According to the final evaluation results, a deeper, wider, and stronger network can improve translation performance in general, yet our data domain adaption method can improve performance even more. In addition, we found that switching to the use of our proposed objective during the finetune phase using relatively small domain-related data can effectively improve the stability of the model's convergence and achieve better optimal performance.
Although many end-to-end context-aware neural machine translation models have been proposed to incorporate inter-sentential contexts in translation, these models can be trained only in domains where parallel documents with sentential alignments exist . We therefore present a simple method to perform context-aware decoding with any pre-trained sentence-level translation model by using a document-level language model. Our context-aware decoder is built upon sentence-level parallel data and target-side document-level monolingual data. From a theoretical viewpoint, our core contribution is the novel representation of contextual information using point-wise mutual information between context and the current sentence. We demonstrate the effectiveness of our method on English to Russian translation, by evaluating with BLEU and contrastive tests for context-aware translation.
Existing curriculum learning approaches to Neural Machine Translation (NMT) require sampling sufficient amounts of easy'' samples from training data at the early training stage. This is not always achievable for low-resource languages where the amoun t of training data is limited. To address such a limitation, we propose a novel token-wise curriculum learning approach that creates sufficient amounts of easy samples. Specifically, the model learns to predict a short sub-sequence from the beginning part of each target sentence at the early stage of training. Then the sub-sequence is gradually expanded as the training progresses. Such a new curriculum design is inspired by the cumulative effect of translation errors, which makes the latter tokens more challenging to predict than the beginning ones. Extensive experiments show that our approach can consistently outperform baselines on five language pairs, especially for low-resource languages. Combining our approach with sentence-level methods further improves the performance of high-resource languages.
Low-resource Multilingual Neural Machine Translation (MNMT) is typically tasked with improving the translation performance on one or more language pairs with the aid of high-resource language pairs. In this paper and we propose two simple search base d curricula -- orderings of the multilingual training data -- which help improve translation performance in conjunction with existing techniques such as fine-tuning. Additionally and we attempt to learn a curriculum for MNMT from scratch jointly with the training of the translation system using contextual multi-arm bandits. We show on the FLORES low-resource translation dataset that these learned curricula can provide better starting points for fine tuning and improve overall performance of the translation system.
Exemplar-Guided Paraphrase Generation (EGPG) aims to generate a target sentence which conforms to the style of the given exemplar while encapsulating the content information of the source sentence. In this paper, we propose a new method with the goal of learning a better representation of the style and the content. This method is mainly motivated by the recent success of contrastive learning which has demonstrated its power in unsupervised feature extraction tasks. The idea is to design two contrastive losses with respect to the content and the style by considering two problem characteristics during training. One characteristic is that the target sentence shares the same content with the source sentence, and the second characteristic is that the target sentence shares the same style with the exemplar. These two contrastive losses are incorporated into the general encoder-decoder paradigm. Experiments on two datasets, namely QQP-Pos and ParaNMT, demonstrate the effectiveness of our proposed constrastive losses.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا