Do you want to publish a course? Click here

Findings of the WMT Shared Task on Machine Translation Using Terminologies

نتائج المهمة المشتركة WMT على الترجمة الآلية باستخدام المصطلحات

359   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Language domains that require very careful use of terminology are abundant and reflect a significant part of the translation industry. In this work we introduce a benchmark for evaluating the quality and consistency of terminology translation, focusing on the medical (and COVID-19 specifically) domain for five language pairs: English to French, Chinese, Russian, and Korean, as well as Czech to German. We report the descriptions and results of the participating systems, commenting on the need for further research efforts towards both more adequate handling of terminologies as well as towards a proper formulation and evaluation of the task.



References used
https://aclanthology.org/
rate research

Read More

This paper describes Lingua Custodia's submission to the WMT21 shared task on machine translation using terminologies. We consider three directions, namely English to French, Russian, and Chinese. We rely on a Transformer-based architecture as a buil ding block, and we explore a method which introduces two main changes to the standard procedure to handle terminologies. The first one consists in augmenting the training data in such a way as to encourage the model to learn a copy behavior when it encounters terminology constraint terms. The second change is constraint token masking, whose purpose is to ease copy behavior learning and to improve model generalization. Empirical results show that our method satisfies most terminology constraints while maintaining high translation quality.
The machine translation efficiency task challenges participants to make their systems faster and smaller with minimal impact on translation quality. How much quality to sacrifice for efficiency depends upon the application, so participants were encou raged to make multiple submissions covering the space of trade-offs. In total, there were 53 submissions by 4 teams. There were GPU, single-core CPU, and multi-core CPU hardware tracks as well as batched throughput or single-sentence latency conditions. Submissions showed hundreds of millions of words can be translated for a dollar, average latency is 5--17 ms, and models fit in 7.5--150 MB.
We present the results of the first task on Large-Scale Multilingual Machine Translation. The task consists on the many-to-many evaluation of a single model across a variety of source and target languages. This year, the task consisted on three diffe rent settings: (i) SMALL-TASK1 (Central/South-Eastern European Languages), (ii) the SMALL-TASK2 (South-East Asian Languages), and (iii) FULL-TASK (all 101 x 100 language pairs). All the tasks used the FLORES-101 dataset as the evaluation benchmark. To ensure the longevity of the dataset, the test sets were not publicly released and the models were evaluated in a controlled environment on Dynabench. There were a total of 10 participating teams for the tasks, with a total of 151 intermediate model submissions and 13 final models. This year's result show a significant improvement over the known base-lines with +17.8 BLEU for SMALL-TASK2, +10.6 for FULL-TASK and +3.6 for SMALL-TASK1.
We report the results of the WMT 2021 shared task on Quality Estimation, where the challenge is to predict the quality of the output of neural machine translation systems at the word and sentence levels. This edition focused on two main novel additio ns: (i) prediction for unseen languages, i.e. zero-shot settings, and (ii) prediction of sentences with catastrophic errors. In addition, new data was released for a number of languages, especially post-edited data. Participating teams from 19 institutions submitted altogether 1263 systems to different task variants and language pairs.
This paper describes Kakao Enterprise's submission to the WMT21 shared Machine Translation using Terminologies task. We integrate terminology constraints by pre-training with target lemma annotations and fine-tuning with exact target annotations util izing the given terminology dataset. This approach yields a model that achieves outstanding results in terms of both translation quality and term consistency, ranking first based on COMET in the En→Fr language direction. Furthermore, we explore various methods such as back-translation, explicitly training terminologies as additional parallel data, and in-domain data selection.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا