Do you want to publish a course? Click here

Low Resource Similar Language Neural Machine Translation for Tamil-Telugu

انخفاض الموارد لغة مشابهة الترجمة الآلية العصبية Tamil-Telugu

350   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper describes the participation of team oneNLP (LTRC, IIIT-Hyderabad) for the WMT 2021 task, similar language translation. We experimented with transformer based Neural Machine Translation and explored the use of language similarity for Tamil-Telugu and Telugu-Tamil. We incorporated use of different subword configurations, script conversion and single model training for both directions as exploratory experiments.



References used
https://aclanthology.org/
rate research

Read More

In this work, two Neural Machine Translation (NMT) systems have been developed and evaluated as part of the bidirectional Tamil-Telugu similar languages translation subtask in WMT21. The OpenNMT-py toolkit has been used to create quick prototypes of the systems, following which models have been trained on the training datasets containing the parallel corpus and finally the models have been evaluated on the dev datasets provided as part of the task. Both the systems have been trained on a DGX station with 4 -V100 GPUs. The first NMT system in this work is a Transformer based 6 layer encoder-decoder model, trained for 100000 training steps, whose configuration is similar to the one provided by OpenNMT-py and this is used to create a model for bidirectional translation. The second NMT system contains two unidirectional translation models with the same configuration as the first system, with the addition of utilizing Byte Pair Encoding (BPE) for subword tokenization through the pre-trained MultiBPEmb model. Based on the dev dataset evaluation metrics for both the systems, the first system i.e. the vanilla Transformer model has been submitted as the Primary system. Since there were no improvements in the metrics during training of the second system with BPE, it has been submitted as a contrastive system.
The neural machine translation approach has gained popularity in machine translation because of its context analysing ability and its handling of long-term dependency issues. We have participated in the WMT21 shared task of similar language translati on on a Tamil-Telugu pair with the team name: CNLP-NITS. In this task, we utilized monolingual data via pre-train word embeddings in transformer model based neural machine translation to tackle the limitation of parallel corpus. Our model has achieved a bilingual evaluation understudy (BLEU) score of 4.05, rank-based intuitive bilingual evaluation score (RIBES) score of 24.80 and translation edit rate (TER) score of 97.24 for both Tamil-to-Telugu and Telugu-to-Tamil translations respectively.
For most language combinations and parallel data is either scarce or simply unavailable. To address this and unsupervised machine translation (UMT) exploits large amounts of monolingual data by using synthetic data generation techniques such as back- translation and noising and while self-supervised NMT (SSNMT) identifies parallel sentences in smaller comparable data and trains on them. To this date and the inclusion of UMT data generation techniques in SSNMT has not been investigated. We show that including UMT techniques into SSNMT significantly outperforms SSNMT (up to +4.3 BLEU and af2en) as well as statistical (+50.8 BLEU) and hybrid UMT (+51.5 BLEU) baselines on related and distantly-related and unrelated language pairs.
In this paper and we explore different techniques of overcoming the challenges of low-resource in Neural Machine Translation (NMT) and specifically focusing on the case of English-Marathi NMT. NMT systems require a large amount of parallel corpora to obtain good quality translations. We try to mitigate the low-resource problem by augmenting parallel corpora or by using transfer learning. Techniques such as Phrase Table Injection (PTI) and back-translation and mixing of language corpora are used for enhancing the parallel data; whereas pivoting and multilingual embeddings are used to leverage transfer learning. For pivoting and Hindi comes in as assisting language for English-Marathi translation. Compared to baseline transformer model and a significant improvement trend in BLEU score is observed across various techniques. We have done extensive manual and automatic and qualitative evaluation of our systems. Since the trend in Machine Translation (MT) today is post-editing and measuring of Human Effort Reduction (HER) and we have given our preliminary observations on Translation Edit Rate (TER) vs. BLEU score study and where TER is regarded as a measure of HER.
A cascaded Sign Language Translation system first maps sign videos to gloss annotations and then translates glosses into a spoken languages. This work focuses on the second-stage gloss translation component, which is challenging due to the scarcity o f publicly available parallel data. We approach gloss translation as a low-resource machine translation task and investigate two popular methods for improving translation quality: hyperparameter search and backtranslation. We discuss the potentials and pitfalls of these methods based on experiments on the RWTH-PHOENIX-Weather 2014T dataset.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا