تصف هذه الورقة تقديم طلبات Lisn إلى مهمتين مشتركين في WMT'21.بالنسبة لمهمة الترجمة الطبية الحيوية، قمنا بتطوير أنظمة ثقيلة من الموارد للزوج اللغوي الإنجليزي - الفرنسي، باستخدام كلا من خارج المجال والمناطق في المجال.يتوافق النوع المستهدف لهذه المهمة (الملخصات العلمية) بالنصوص التي غالبا ما يكون لها هيكل موحد.تحاول أنظمتنا أن تأخذ هذا الهيكل في الاعتبار باستخدام نظام هرمي لعلامات مستوى الجملة.كما تم إعداد أنظمة الترجمة المهمة الإخبارية لزوج اللغة الفرنسية الألمانية.كان التحدي هو إجراء التكيف غير المزدوج مع المجال المستهدف (الأخبار المالية).لهذا، استكشفنا إمكانات الاستراتيجيات القائمة على الاسترجاع، حيث يتم استخدام الجمل التي تشبه مثيلات الاختبار لزيادة وحدة فك الترميز.
This paper describes LISN's submissions to two shared tasks at WMT'21. For the biomedical translation task, we have developed resource-heavy systems for the English-French language pair, using both out-of-domain and in-domain corpora. The target genre for this task (scientific abstracts) corresponds to texts that often have a standardized structure. Our systems attempt to take this structure into account using a hierarchical system of sentence-level tags. Translation systems were also prepared for the News task for the French-German language pair. The challenge was to perform unsupervised adaptation to the target domain (financial news). For this, we explored the potential of retrieval-based strategies, where sentences that are similar to test instances are used to prime the decoder.
References used
https://aclanthology.org/
This paper describes SYSTRAN submissions to the WMT 2021 terminology shared task. We participate in the English-to-French translation direction with a standard Transformer neural machine translation network that we enhance with the ability to dynamic
The paper describes the 3 NMT models submitted by the eTranslation team to the WMT 2021 news translation shared task. We developed systems in language pairs that are actively used in the European Commission's eTranslation service. In the WMT news tas
We report the results of the WMT 2021 shared task on Quality Estimation, where the challenge is to predict the quality of the output of neural machine translation systems at the word and sentence levels. This edition focused on two main novel additio
The machine translation efficiency task challenges participants to make their systems faster and smaller with minimal impact on translation quality. How much quality to sacrifice for efficiency depends upon the application, so participants were encou
This paper presents our work in WMT 2021 Quality Estimation (QE) Shared Task. We participated in all of the three sub-tasks, including Sentence-Level Direct Assessment (DA) task, Word and Sentence-Level Post-editing Effort task and Critical Error Det