تصف هذه الورقة التقديمات SYSTRAN إلى المهمة المشتركة لمصطلحات WMT 2021.نشارك في اتجاه الترجمة الإنجليزي إلى الفرنسية مع شبكة الترجمة الآلية العذبة القياسية التي نعززها مع القدرة على تضمين قيود المصطلحات بشكل حيوي، وهي ممارسة صناعية مشتركة للغاية.يتم تقييم أساليب إدراج مصطلحتين لمصطلحات حديثة مقرها (ط) على استخدام العناصر النائبة التي تستكمل مع التعليق التوضيحي المورفوسنيتات و (2) بشأن استخدام القيود المستهدفة حقنها في مجرى المصدر.تظهر النتائج مدى ملاءمة النهج المقدمة في السيناريو المقيم حيث يتم استخدام المصطلحات في نظام مدرب على البيانات العامة فقط.
This paper describes SYSTRAN submissions to the WMT 2021 terminology shared task. We participate in the English-to-French translation direction with a standard Transformer neural machine translation network that we enhance with the ability to dynamically include terminology constraints, a very common industrial practice. Two state-of-the-art terminology insertion methods are evaluated based (i) on the use of placeholders complemented with morphosyntactic annotation and (ii) on the use of target constraints injected in the source stream. Results show the suitability of the presented approaches in the evaluated scenario where terminology is used in a system trained on generic data only.
References used
https://aclanthology.org/
The paper describes the 3 NMT models submitted by the eTranslation team to the WMT 2021 news translation shared task. We developed systems in language pairs that are actively used in the European Commission's eTranslation service. In the WMT news tas
We report the results of the WMT 2021 shared task on Quality Estimation, where the challenge is to predict the quality of the output of neural machine translation systems at the word and sentence levels. This edition focused on two main novel additio
This paper describes Lingua Custodia's submission to the WMT21 shared task on machine translation using terminologies. We consider three directions, namely English to French, Russian, and Chinese. We rely on a Transformer-based architecture as a buil
This paper presents the submission of Huawei Translation Service Center (HW-TSC) to WMT 2021 Triangular MT Shared Task. We participate in the Russian-to-Chinese task under the constrained condition. We use Transformer architecture and obtain the best
This paper describes LISN's submissions to two shared tasks at WMT'21. For the biomedical translation task, we have developed resource-heavy systems for the English-French language pair, using both out-of-domain and in-domain corpora. The target genr