تقدم هذه الورقة عملنا في مهمة تقدير الجودة WMT 2021 (QE).لقد شاركنا في جميع المهام الفرعية الثلاثة، بما في ذلك مهمة التقييم المباشر على مستوى الجملة، والكلمة ومهمة جهود جهود ما بعد التحرير للكلمة وحكم الجملة ومهمة الكشف عن الأخطاء الحرجة، في جميع أزواج اللغات.تستخدم أنظمتنا إطار النبة المقدرة، بشكل ملموس باستخدام XLM-Roberta مدربة مسبقا كقسم مؤشر ومجموعة من المهام أو التراجع كمقيم.بالنسبة لجميع المهام، نحسن أنظمتنا من خلال دمج الجملة بعد التعديل أو جملة ترجمة إضافية عالية الجودة في طريقة التعلم المتعدد أو ترميزها مع التنبؤ مباشرة.علاوة على ذلك، في وضع صفري بالرصاص، فإن استراتيجية تكبير البيانات الخاصة بنا تعتمد على تراجع مونت كارلو يجلب تحسنا كبيرا في مهمة DA Sub.والجدير بالذكر أن عروضنا تحقق نتائج ملحوظة على جميع المهام.
This paper presents our work in WMT 2021 Quality Estimation (QE) Shared Task. We participated in all of the three sub-tasks, including Sentence-Level Direct Assessment (DA) task, Word and Sentence-Level Post-editing Effort task and Critical Error Detection task, in all language pairs. Our systems employ the framework of Predictor-Estimator, concretely with a pre-trained XLM-Roberta as Predictor and task-specific classifier or regressor as Estimator. For all tasks, we improve our systems by incorporating post-edit sentence or additional high-quality translation sentence in the way of multitask learning or encoding it with predictors directly. Moreover, in zero-shot setting, our data augmentation strategy based on Monte-Carlo Dropout brings up significant improvement on DA sub-task. Notably, our submissions achieve remarkable results over all tasks.
References used
https://aclanthology.org/
This paper presents the submission of Huawei Translation Services Center (HW-TSC) to WMT 2021 Efficiency Shared Task. We explore the sentence-level teacher-student distillation technique and train several small-size models that find a balance between
This paper presents the submission of Huawei Translate Services Center (HW-TSC) to the WMT 2021 News Translation Shared Task. We participate in 7 language pairs, including Zh/En, De/En, Ja/En, Ha/En, Is/En, Hi/Bn, and Xh/Zu in both directions under t
This paper presents the submission of Huawei Translation Service Center (HW-TSC) to WMT 2021 Triangular MT Shared Task. We participate in the Russian-to-Chinese task under the constrained condition. We use Transformer architecture and obtain the best
We report the results of the WMT 2021 shared task on Quality Estimation, where the challenge is to predict the quality of the output of neural machine translation systems at the word and sentence levels. This edition focused on two main novel additio
This paper describes Lingua Custodia's submission to the WMT21 shared task on machine translation using terminologies. We consider three directions, namely English to French, Russian, and Chinese. We rely on a Transformer-based architecture as a buil