Do you want to publish a course? Click here

GPT3Mix: Leveraging Large-scale Language Models for Text Augmentation

gpt3mix: الاستفادة من نماذج اللغة واسعة النطاق لتعزيز النص

502   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Large-scale language models such as GPT-3 are excellent few-shot learners, allowing them to be controlled via natural text prompts. Recent studies report that prompt-based direct classification eliminates the need for fine-tuning but lacks data and inference scalability. This paper proposes a novel data augmentation technique that leverages large-scale language models to generate realistic text samples from a mixture of real samples. We also propose utilizing soft-labels predicted by the language models, effectively distilling knowledge from the large-scale language models and creating textual perturbations simultaneously. We perform data augmentation experiments on diverse classification tasks and show that our method hugely outperforms existing text augmentation methods. We also conduct experiments on our newly proposed benchmark to show that the augmentation effect is not only attributed to memorization. Further ablation studies and a qualitative analysis provide more insights into our approach.



References used
https://aclanthology.org/
rate research

Read More

The key challenge of question answering over knowledge bases (KBQA) is the inconsistency between the natural language questions and the reasoning paths in the knowledge base (KB). Recent graph-based KBQA methods are good at grasping the topological s tructure of the graph but often ignore the textual information carried by the nodes and edges. Meanwhile, pre-trained language models learn massive open-world knowledge from the large corpus, but it is in the natural language form and not structured. To bridge the gap between the natural language and the structured KB, we propose three relation learning tasks for BERT-based KBQA, including relation extraction, relation matching, and relation reasoning. By relation-augmented training, the model learns to align the natural language expressions to the relations in the KB as well as reason over the missing connections in the KB. Experiments on WebQSP show that our method consistently outperforms other baselines, especially when the KB is incomplete.
GPT-3 shows remarkable in-context learning ability of large-scale language models (LMs) trained on hundreds of billion scale data. Here we address some remaining issues less reported by the GPT-3 paper, such as a non-English LM, the performances of d ifferent sized models, and the effect of recently introduced prompt optimization on in-context learning. To achieve this, we introduce HyperCLOVA, a Korean variant of 82B GPT-3 trained on a Korean-centric corpus of 560B tokens. Enhanced by our Korean-specific tokenization, HyperCLOVA with our training configuration shows state-of-the-art in-context zero-shot and few-shot learning performances on various downstream tasks in Korean. Also, we show the performance benefits of prompt-based learning and demonstrate how it can be integrated into the prompt engineering pipeline. Then we discuss the possibility of materializing the No Code AI paradigm by providing AI prototyping capabilities to non-experts of ML by introducing HyperCLOVA studio, an interactive prompt engineering interface. Lastly, we demonstrate the potential of our methods with three successful in-house applications.
Despite the remarkable performance of large-scale generative models in open-domain conversation, they are known to be less practical for building real-time conversation systems due to high latency. On the other hand, retrieval models could return res ponses with much lower latency but show inferior performance to the large-scale generative models since the conversation quality is bounded by the pre-defined response set. To take advantage of both approaches, we propose a new training method called G2R (Generative-to-Retrieval distillation) that preserves the efficiency of a retrieval model while leveraging the conversational ability of a large-scale generative model by infusing the knowledge of the generative model into the retrieval model. G2R consists of two distinct techniques of distillation: the data-level G2R augments the dialogue dataset with additional responses generated by the large-scale generative model, and the model-level G2R transfers the response quality score assessed by the generative model to the score of the retrieval model by the knowledge distillation loss. Through extensive experiments including human evaluation, we demonstrate that our retrieval-based conversation system trained with G2R shows a substantially improved performance compared to the baseline retrieval model while showing significantly lower inference latency than the large-scale generative models.
Recent development in NLP shows a strong trend towards refining pre-trained models with a domain-specific dataset. This is especially the case for response generation where emotion plays an important role. However, existing empathetic datasets remain small, delaying research efforts in this area, for example, the development of emotion-aware chatbots. One main technical challenge has been the cost of manually annotating dialogues with the right emotion labels. In this paper, we describe a large-scale silver dataset consisting of 1M dialogues annotated with 32 fine-grained emotions, eight empathetic response intents, and the Neutral category. To achieve this goal, we have developed a novel data curation pipeline starting with a small seed of manually annotated data and eventually scaling it to a satisfactory size. We compare its quality against a state-of-the-art gold dataset using both offline experiments and visual validation methods. The resultant procedure can be used to create similar datasets in the same domain as well as in other domains.
Cross-document event coreference resolution is a foundational task for NLP applications involving multi-text processing. However, existing corpora for this task are scarce and relatively small, while annotating only modest-size clusters of documents belonging to the same topic. To complement these resources and enhance future research, we present Wikipedia Event Coreference (WEC), an efficient methodology for gathering a large-scale dataset for cross-document event coreference from Wikipedia, where coreference links are not restricted within predefined topics. We apply this methodology to the English Wikipedia and extract our large-scale WEC-Eng dataset. Notably, our dataset creation method is generic and can be applied with relatively little effort to other Wikipedia languages. To set baseline results, we develop an algorithm that adapts components of state-of-the-art models for within-document coreference resolution to the cross-document setting. Our model is suitably efficient and outperforms previously published state-of-the-art results for the task.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا