يرتبط مرض الزهايمر (الإعلان) بالعديد من التغييرات المميزة، ليس فقط في لغة الفرد ولكن أيضا في أنماط تفاعلية لاحظت في الحوار. تميل التغييرات الأكثر إرشادية لهذا النوع الأخير إلى أن تكون مرتبطة بأعمال الحوار النادرة نسبيا (DAS)، مثل المشاركين في التبادلات والردود على أنواع معينة من الأسئلة. ومع ذلك، يركز معظم الأعمال الموجودة في العلامة في DA على تحسين الأداء المتوسط، وتحديد أولويات فئات أكثر تواترا؛ وبالتالي فإنه يعطي أداء ضعيفا على هذه الفصول الدراسية النادرة وليس مناسبا للتطبيق على تحليل الإعلانات. في هذه الورقة، نحقق في وضع علامات على وجه التحديد بالنسبة لفئة DAS النادرة، باستخدام نموذج Bilstm هرمي مع طرق مختلفة لإدماج المعلومات من الكلام السابق وعلامات التنمية في السياق. نظهر أن هذا يمكن أن يعطي أداء جيدا لفصول DA نادرة على كل من Corpus لوحة المفاتيح العامة (SWDA) ومجموعة بيانات محادثة محددة من الإعلانات، ومجموعة محادثة Carolinas (CCC)؛ وأن مخرجات Tagger ثم تساهم بمعلومات مفيدة لتمييز المرضى وبدون إعلان
Alzheimer's Disease (AD) is associated with many characteristic changes, not only in an individual's language but also in the interactive patterns observed in dialogue. The most indicative changes of this latter kind tend to be associated with relatively rare dialogue acts (DAs), such as those involved in clarification exchanges and responses to particular kinds of questions. However, most existing work in DA tagging focuses on improving average performance, effectively prioritizing more frequent classes; it thus gives a poor performance on these rarer classes and is not suited for application to AD analysis. In this paper, we investigate tagging specifically for rare class DAs, using a hierarchical BiLSTM model with various ways of incorporating information from previous utterances and DA tags in context. We show that this can give good performance for rare DA classes on both the general Switchboard corpus (SwDA) and an AD-specific conversational dataset, the Carolinas Conversation Collection (CCC); and that the tagger outputs then contribute useful information for distinguishing patients with and without AD
References used
https://aclanthology.org/
Understanding robustness and sensitivity of BERT models predicting Alzheimer's disease from text is important for both developing better classification models and for understanding their capabilities and limitations. In this paper, we analyze how a c
Dialogue Act (DA) classification is the task of classifying utterances with respect to the function they serve in a dialogue. Existing approaches to DA classification model utterances without incorporating the turn changes among speakers throughout t
This study proposes an utterance position-aware approach for a neural network-based dialogue act recognition (DAR) model, which incorporates positional encoding for utterance's absolute or relative position. The proposed approach is inspired by the o
The performance of NMT systems has improved drastically in the past few years but the translation of multi-sense words still poses a challenge. Since word senses are not represented uniformly in the parallel corpora used for training, there is an exc
In this paper we discuss an ongoing effort to enrich students' learning by involving them in sense tagging. The main goal is to lead students to discover how we can represent meaning and where the limits of our current theories lie. A subsidiary goal