Do you want to publish a course? Click here

Vortices and invariants surfaces generated by symmetries for the 3D Navier-Stokes equations

65   0   0.0 ( 0 )
 Added by ul
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that certain infinitesimal operators of the Lie-point symmetries of the incompressible 3D Navier-Stokes equations give rise to vortex solutions with different characteristics. This approach allows an algebraic classification of vortices and throws light on the alignment mechanism between the vorticity and the vortex stretching vector. The symmetry algebra associated with the Navier-Stokes equations turns out to be infinite- dimensional. New vortical structures, generalizing in some cases well-known configurations such as, for example, the Burgers and Lundgren solutions, are obtained and discussed in relation to the value of the dynamic angle. A systematic treatment of the boundary conditions invariant under the symmetry group of the equations under study is also performed, and the corresponding invariant surfaces are recognized.



rate research

Read More

134 - R. M. Kiehn 2007
The concept of continuous topological evolution, based upon Cartans methods of exterior differential systems, is used to develop a topological theory of non-equilibrium thermodynamics, within which there exist processes that exhibit continuous topological change and thermodynamic irreversibility. The technique furnishes a universal, topological foundation for the partial differential equations of hydrodynamics and electrodynamics; the technique does not depend upon a metric, connection or a variational principle. Certain topological classes of solutions to the Navier-Stokes equations are shown to be equivalent to thermodynamically irreversible processes.
The compressible Navier-Stokes-Poisson system is concerned in the present paper, and the global existence and uniqueness of the strong solution is shown in the framework of hybrid Besov spaces in three and higher dimensions.
167 - Daoyuan Fang , Chenyin Qian 2012
In this article, we establish sufficient conditions for the regularity of solutions of Navier-Stokes equations based on one of the nine entries of the gradient tensor. We improve the recently results of C.S. Cao, E.S. Titi (Arch. Rational Mech.Anal. 202 (2011) 919-932) and Y. Zhou, M. Pokorn$acute{y}$ (Nonlinearity 23, 1097-1107 (2010)).
We prove that the energy equality holds for weak solutions of the 3D Navier-Stokes equations in the functional class $L^3([0,T);V^{5/6})$, where $V^{5/6}$ is the domain of the fractional power of the Stokes operator $A^{5/12}$.
131 - W. Galleas 2018
This paper is a continuation of our previous work Six-vertex model and non-linear differential equations I. Spectral problem in which we have put forward a method for studying the spectrum of the six-vertex model based on non-linear differential equations. Here we intend to elaborate on that approach and also discuss properties of the spectrum unveiled by the aforementioned differential formulation of the transfer matrixs eigenvalue problem. In particular, we intend to demonstrate how this differential approach allows one to study continuous symmetries of the transfer matrixs spectrum through the Lie groups method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا