Do you want to publish a course? Click here

Six-vertex model and non-linear differential equations II. Continuous symmetries

132   0   0.0 ( 0 )
 Added by Wellington Galleas
 Publication date 2018
  fields Physics
and research's language is English
 Authors W. Galleas




Ask ChatGPT about the research

This paper is a continuation of our previous work Six-vertex model and non-linear differential equations I. Spectral problem in which we have put forward a method for studying the spectrum of the six-vertex model based on non-linear differential equations. Here we intend to elaborate on that approach and also discuss properties of the spectrum unveiled by the aforementioned differential formulation of the transfer matrixs eigenvalue problem. In particular, we intend to demonstrate how this differential approach allows one to study continuous symmetries of the transfer matrixs spectrum through the Lie groups method.



rate research

Read More

110 - W. Galleas 2015
This letter is concerned with the analysis of the six-vertex model with domain-wall boundaries in terms of partial differential equations (PDEs). The models partition function is shown to obey a system of PDEs resembling the celebrated Knizhnik-Zamolodchikov equation. The analysis of our PDEs naturally produces a family of novel determinant representations for the models partition function.
We pursue our study of the antiperiodic dynamical 6-vertex model using Sklyanins separation of variables approach, allowing in the model new possible global shifts of the dynamical parameter. We show in particular that the spectrum and eigenstates of the antiperiodic transfer matrix are completely characterized by a system of discrete equations. We prove the existence of different reformulations of this characterization in terms of functional equations of Baxters type. We notably consider the homogeneous functional $T$-$Q$ equation which is the continuous analog of the aforementioned discrete system and show, in the case of a model with an even number of sites, that the complete spectrum and eigenstates of the antiperiodic transfer matrix can equivalently be described in terms of a particular class of its $Q$-solutions, hence leading to a complete system of Bethe equations. Finally, we compute the form factors of local operators for which we obtain determinant representations in finite volume.
To any differential system $dPsi=PhiPsi$ where $Psi$ belongs to a Lie group (a fiber of a principal bundle) and $Phi$ is a Lie algebra $mathfrak g$ valued 1-form on a Riemann surface $Sigma$, is associated an infinite sequence of correlators $W_n$ that are symmetric $n$-forms on $Sigma^n$. The goal of this article is to prove that these correlators always satisfy loop equations, the same equations satisfied by correlation functions in random matrix models, or the same equations as Virasoro or W-algebra constraints in CFT.
154 - F. Gungor 2015
A systematic and unified approach to transformations and symmetries of general second order linear parabolic partial differential equations is presented. Equivalence group is used to derive the Appell type transformations, specifically Mehlers kernel in any dimension. The complete symmetry group classification is re-performed. A new criterion which is necessary and sufficient for reduction to the standard heat equation by point transformations is established. A similar criterion is also valid for the equations to have a four- or six-dimensional symmetry group (nontrivial symmetry groups). In this situation, the basis elements are listed in terms of coefficients. A number of illustrative examples are given. In particular, some applications from the recent literature are re-examined in our new approach. Applications include a comparative discussion of heat kernels based on group-invariant solutions and the idea of connecting Lie symmetries and classical integral transforms introduced by Craddock and his coworkers. Multidimensional parabolic PDEs of heat and Schrodinger type are also considered.
64 - V. Grassi , R.A. Leo , G. Soliani 1999
We show that certain infinitesimal operators of the Lie-point symmetries of the incompressible 3D Navier-Stokes equations give rise to vortex solutions with different characteristics. This approach allows an algebraic classification of vortices and throws light on the alignment mechanism between the vorticity and the vortex stretching vector. The symmetry algebra associated with the Navier-Stokes equations turns out to be infinite- dimensional. New vortical structures, generalizing in some cases well-known configurations such as, for example, the Burgers and Lundgren solutions, are obtained and discussed in relation to the value of the dynamic angle. A systematic treatment of the boundary conditions invariant under the symmetry group of the equations under study is also performed, and the corresponding invariant surfaces are recognized.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا