Do you want to publish a course? Click here

Turbulence and the Navier-Stokes equations

134   0   0.0 ( 0 )
 Added by R. M. Kiehn
 Publication date 2007
  fields Physics
and research's language is English
 Authors R. M. Kiehn




Ask ChatGPT about the research

The concept of continuous topological evolution, based upon Cartans methods of exterior differential systems, is used to develop a topological theory of non-equilibrium thermodynamics, within which there exist processes that exhibit continuous topological change and thermodynamic irreversibility. The technique furnishes a universal, topological foundation for the partial differential equations of hydrodynamics and electrodynamics; the technique does not depend upon a metric, connection or a variational principle. Certain topological classes of solutions to the Navier-Stokes equations are shown to be equivalent to thermodynamically irreversible processes.



rate research

Read More

A coupled forward-backward stochastic differential system (FBSDS) is formulated in spaces of fields for the incompressible Navier-Stokes equation in the whole space. It is shown to have a unique local solution, and further if either the Reynolds number is small or the dimension of the forward stochastic differential equation is equal to two, it can be shown to have a unique global solution. These results are shown with probabilistic arguments to imply the known existence and uniqueness results for the Navier-Stokes equation, and thus provide probabilistic formulas to the latter. Related results and the maximum principle are also addressed for partial differential equations (PDEs) of Burgers type. Moreover, from truncating the time interval of the above FBSDS, approximate solution is derived for the Navier-Stokes equation by a new class of FBSDSs and their associated PDEs; our probabilistic formula is also bridged to the probabilistic Lagrangian representations for the velocity field, given by Constantin and Iyer (Commun. Pure Appl. Math. 61: 330--345, 2008) and Zhang (Probab. Theory Relat. Fields 148: 305--332, 2010) ; finally, the solution of the Navier-Stokes equation is shown to be a critical point of controlled forward-backward stochastic differential equations.
84 - James Glimm , Daniel Lazarev , 2020
In a particle physics dynamics, we assume a uniform distribution as the physical measure and a measure-theoretic definition of entropy on the velocity configuration space. This distribution is labeled as the physical solution in the remainder of the article. The dynamics is governed by an assumption of a Lagrangian formulation, with the velocity time derivatives as the momenta conjugate to the velocity configurations. From these definitions and assumptions, we show mathematically that a maximum entropy production principle selects the physical measure from among alternate solutions of the Navier-Stokes and Euler equations, but its transformation to an Eulerian frame is not established here, a topic that will be considered separately.
180 - Antonio Russo 2011
We prove that the steady--state Navier--Stokes problem in a plane Lipschitz domain $Omega$ exterior to a bounded and simply connected set has a $D$-solution provided the boundary datum $a in L^2(partialOmega)$ satisfies ${1over 2pi}|int_{partialOmega}acdot |<1$. If $Omega$ is of class $C^{1,1}$, we can assume $ain W^{-1/4,4}(partialOmega)$. Moreover, we show that for every $D$--solution $(u,p)$ of the Navier--Stokes equations it holds $ abla p = o(r^{-1}), abla_k p = O(r^{epsilon-3/2}), abla_ku = O(r^{epsilon-3/4})$, for all $kin{Bbb N}setminus{1}$ and for all positive $epsilon$, and if the flux of $u$ through a circumference surrounding $complementOmega$ is zero, then there is a constant vector $u_0$ such that $u=u_0+o(1)$.
In this paper, we investigate numerically a diffuse interface model for the Navier-Stokes equation with fluid-fluid interface when the fluids have different densities cite{Lowengrub1998}. Under minor reformulation of the system, we show that there is a continuous energy law underlying the system, assuming that all variables have reasonable regularities. It is shown in the literature that an energy law preserving method will perform better for multiphase problems. Thus for the reformulated system, we design a $C^0$ finite element method and a special temporal scheme where the energy law is preserved at the discrete level. Such a discrete energy law (almost the same as the continuous energy law) for this variable density two-phase flow model has never been established before with $C^0$ finite element. A Newtons method is introduced to linearise the highly non-linear system of our discretization scheme. Some numerical experiments are carried out using the adaptive mesh to investigate the scenario of coalescing and rising drops with differing density ratio. The snapshots for the evolution of the interface together with the adaptive mesh at different times are presented to show that the evolution, including the break-up/pinch-off of the drop, can be handled smoothly by our numerical scheme. The discrete energy functional for the system is examined to show that the energy law at the discrete level is preserved by our scheme.
We accomplish two major tasks. First, we show that the turbulent motion at large scales obeys Gaussian statistics in the interval 0 < Rlambda < 8.8, where Rlambda is the microscale Reynolds number, and that the Gaussian flow breaks down to yield place to anomalous scaling at the universal Reynolds number bounding the inequality above. In the inertial range of turbulence that emerges following the breakdown, the effective Reynolds number based on the turbulent viscosity, Rlambda* assumes this same constant value of about 9. This scenario works also for the emergence of turbulence from an initially non-turbulent state. Second, we derive expressions for the anomalous scaling exponents of structure functions and moments of spatial derivatives, by analyzing the Navier-Stokes equations in the form developed by Hopf. We present a novel procedure to close the Hopf equation, resulting in expressions for zetan in the entire range of allowable moment-order, n, and demonstrate that accounting for the temporal dynamics changes the scaling from normal to anomalous. For large n, the theory predicts the saturation of zetan with n, leading to two inferences: (a) the smallest length scale etan = LRe-1 << LRe-3/4, where Re is the large-scale Reynolds number, and (b) velocity excursions across even the smallest length scales can sometimes be as large as the large scale velocity itself. Theoretical predictions for each of these aspects are shown to be in quantitative agreement with available experimental and numerical data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا