Do you want to publish a course? Click here

Global existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions

239   0   0.0 ( 0 )
 Added by Chengchun Hao Dr.
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The compressible Navier-Stokes-Poisson system is concerned in the present paper, and the global existence and uniqueness of the strong solution is shown in the framework of hybrid Besov spaces in three and higher dimensions.



rate research

Read More

The energy equalities of compressible Navier-Stokes equations with general pressure law and degenerate viscosities are studied. By using a unified approach, we give sufficient conditions on the regularity of weak solutions for these equalities to hold. The method of proof is suitable for the case of periodic as well as homogeneous Dirichlet boundary conditions. In particular, by a careful analysis using the homogeneous Dirichlet boundary condition, no boundary layer assumptions are required when dealing with bounded domains with boundary.
We construct forward self-similar solutions (expanders) for the compressible Navier-Stokes equations. Some of these self-similar solutions are smooth, while others exhibit a singularity do to cavitation at the origin.
126 - R. M. Kiehn 2007
The concept of continuous topological evolution, based upon Cartans methods of exterior differential systems, is used to develop a topological theory of non-equilibrium thermodynamics, within which there exist processes that exhibit continuous topological change and thermodynamic irreversibility. The technique furnishes a universal, topological foundation for the partial differential equations of hydrodynamics and electrodynamics; the technique does not depend upon a metric, connection or a variational principle. Certain topological classes of solutions to the Navier-Stokes equations are shown to be equivalent to thermodynamically irreversible processes.
In this paper we propose new method for proving of global solutions for 3D Navier-Stokes equations. This complies an application to the Clay Institute Millennium Prize Navier Stokes Problem. The proposed method can be applied for investigation of global solutions for other classes of PDEs.
81 - Jinkai Li 2019
In this paper, the initial-boundary value problem of the 1D full compressible Navier-Stokes equations with positive constant viscosity but with zero heat conductivity is considered. Global well-posedness is established for any $H^1$ initial data. The initial density is required to be nonnegative, which is not necessary to be uniformly away from vacuum. This not only generalizes the well-known result of Kazhikhov--Shelukhin (Kazhikhov, A.~V.; Shelukhin, V.~V.: emph{Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas}, J.,Appl.,Math.,Mech., bf41 rm(1977), 273--282.) from the heat conductive case to the non-heat conductive case, and the initial vacuum is allowed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا