Do you want to publish a course? Click here

UniMS: A Unified Framework for Multimodal Summarization with Knowledge Distillation

68   0   0.0 ( 0 )
 Added by Zhengkun Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

With the rapid increase of multimedia data, a large body of literature has emerged to work on multimodal summarization, the majority of which target at refining salient information from textual and visual modalities to output a pictorial summary with the most relevant images. Existing methods mostly focus on either extractive or abstractive summarization and rely on qualified image captions to build image references. We are the first to propose a Unified framework for Multimodal Summarization grounding on BART, UniMS, that integrates extractive and abstractive objectives, as well as selecting the image output. Specially, we adopt knowledge distillation from a vision-language pretrained model to improve image selection, which avoids any requirement on the existence and quality of image captions. Besides, we introduce a visual guided decoder to better integrate textual and visual modalities in guiding abstractive text generation. Results show that our best model achieves a new state-of-the-art result on a large-scale benchmark dataset. The newly involved extractive objective as well as the knowledge distillation technique are proven to bring a noticeable improvement to the multimodal summarization task.



rate research

Read More

Pre-trained language models have been applied to various NLP tasks with considerable performance gains. However, the large model sizes, together with the long inference time, limit the deployment of such models in real-time applications. Typical approaches consider knowledge distillation to distill large teacher models into small student models. However, most of these studies focus on single-domain only, which ignores the transferable knowledge from other domains. We argue that training a teacher with transferable knowledge digested across domains can achieve better generalization capability to help knowledge distillation. To this end, we propose a Meta-Knowledge Distillation (Meta-KD) framework to build a meta-teacher model that captures transferable knowledge across domains inspired by meta-learning and use it to pass knowledge to students. Specifically, we first leverage a cross-domain learning process to train the meta-teacher on multiple domains, and then propose a meta-distillation algorithm to learn single-domain student models with guidance from the meta-teacher. Experiments on two public multi-domain NLP tasks show the effectiveness and superiority of the proposed Meta-KD framework. We also demonstrate the capability of Meta-KD in both few-shot and zero-shot learning settings.
In this paper, we study abstractive summarization for open-domain videos. Unlike the traditional text news summarization, the goal is less to compress text information but rather to provide a fluent textual summary of information that has been collected and fused from different source modalities, in our case video and audio transcripts (or text). We show how a multi-source sequence-to-sequence model with hierarchical attention can integrate information from different modalities into a coherent output, compare various models trained with different modalities and present pilot experiments on the How2 corpus of instructional videos. We also propose a new evaluation metric (Content F1) for abstractive summarization task that measures semantic adequacy rather than fluency of the summaries, which is covered by metrics like ROUGE and BLEU.
Quality Estimation (QE) is the task of automatically predicting Machine Translation quality in the absence of reference translations, making it applicable in real-time settings, such as translating online social media conversations. Recent success in QE stems from the use of multilingual pre-trained representations, where very large models lead to impressive results. However, the inference time, disk and memory requirements of such models do not allow for wide usage in the real world. Models trained on distilled pre-trained representations remain prohibitively large for many usage scenarios. We instead propose to directly transfer knowledge from a strong QE teacher model to a much smaller model with a different, shallower architecture. We show that this approach, in combination with data augmentation, leads to light-weight QE models that perform competitively with distilled pre-trained representations with 8x fewer parameters.
Significant memory and computational requirements of large deep neural networks restrict their application on edge devices. Knowledge distillation (KD) is a prominent model compression technique for deep neural networks in which the knowledge of a trained large teacher model is transferred to a smaller student model. The success of knowledge distillation is mainly attributed to its training objective function, which exploits the soft-target information (also known as dark knowledge) besides the given regular hard labels in a training set. However, it is shown in the literature that the larger the gap between the teacher and the student networks, the more difficult is their training using knowledge distillation. To address this shortcoming, we propose an improved knowledge distillation method (called Annealing-KD) by feeding the rich information provided by the teachers soft-targets incrementally and more efficiently. Our Annealing-KD technique is based on a gradual transition over annealed soft-targets generated by the teacher at different temperatures in an iterative process, and therefore, the student is trained to follow the annealed teacher output in a step-by-step manner. This paper includes theoretical and empirical evidence as well as practical experiments to support the effectiveness of our Annealing-KD method. We did a comprehensive set of experiments on different tasks such as image classification (CIFAR-10 and 100) and NLP language inference with BERT-based models on the GLUE benchmark and consistently got superior results.
Existing summarization systems mostly generate summaries purely relying on the content of the source document. However, even for humans, we usually need some references or exemplars to help us fully understand the source document and write summaries in a particular format. But how to find the high-quality exemplars and incorporate them into summarization systems is still challenging and worth exploring. In this paper, we propose RetrievalSum, a novel retrieval enhanced abstractive summarization framework consisting of a dense Retriever and a Summarizer. At first, several closely related exemplars are retrieved as supplementary input to help the generation model understand the text more comprehensively. Furthermore, retrieved exemplars can also play a role in guiding the model to capture the writing style of a specific corpus. We validate our method on a wide range of summarization datasets across multiple domains and two backbone models: BERT and BART. Results show that our framework obtains significant improvement by 1.38~4.66 in ROUGE-1 score when compared with the powerful pre-trained models, and achieve new state-of-the-art on BillSum. Human evaluation demonstrates that our retrieval enhanced model can better capture the domain-specific writing style.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا