Do you want to publish a course? Click here

The TaichuPix1: A Monolithic Active Pixel Sensor with fast in-pixel readout electronics for the CEPC vertex detector

91   0   0.0 ( 0 )
 Added by Tianya Wu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The proposed Circular Electron Positron Collider (CEPC) imposes new challenges for the vertex detector in terms of high resolution, low material, fast readout and low power. The Monolithic Active Pixel Sensor (MAPS) technology has been chosen as one of the most promising candidates to satisfy these requirements. A MAPS prototype, called TaichuPix1, based on a data-driven structure, together with a column drain readout architecture, benefiting from the ALPIDE and FE-I3 approaches, has been implemented to achieve fast readout. This paper presents the overall architecture of TaichuPix1, the experimental characterization of the FE-I3-like matrix, the threshold dispersion, the noise distribution of the pixels and verifies the charge collection using a radioactive source. These results prove the functionality of the digital periphery and serializer are able to transmit the collected charge to the data interface correctly. Moreover, the individual self-tests of the serializer verify it can work up to about 3 Gbps. And it also indicates that the analog front-end features a fast-rising signal with a short time walk and that the FE-I3-like in-pixel digital logic is properly operating at the 40 MHz system clock.



rate research

Read More

87 - L.J. Chen , H.B. Zhu , X.C.Ai 2019
Purpose: CMOS pixel sensors have become extremely attractive for future high performance tracking devices. Initial R&D work has been conducted for the vertex detector for the proposed Circular Electron Positron Collider that will allow precision Higgs measurements. It is critical to achieve low power consumption to minimize the material budget. This requires careful optimization of the sensor diode geometry to reach high charge-over-capacitance that allows reduction in analog power consumption. Methods: The electrode area and footprint are two critical elements in sensor diode geometry and have deciding impacts on the sensor charge collection performance. Prototype CMOS pixel sensor JadePix-1 has been developed with pixel sectors implementing different electrode area and footprint and their charge collection performance has been characterized with radioactive resources. Results: Charge-to-voltage conversion gains are calibrated with low energy X-ray. Noise, charge collection efficiency, charge-over-capacitance and signal-to-noise ratio are obtained for pixel sectors of different electrode area and footprint. Conclusion: Small electrode area and large footprint are preferred to achieve high charge-over-capacitance that promises low analog power consumption. Ongoing studies on sensor performance before and after irradiation, combined with this work, will conclude on the diode geometry optimization.
An improved SOI-MAPS (Silicon On Insulator Monolithic Active Pixel Sensor) for ionizing radiation based on thick-film High Voltage SOI technology (HV-SOI) has been developed. Similar to existing Fully Depleted SOI-based (FD-SOI) MAPS, a buried silicon oxide inter-dielectric (BOX) layer is used to separate the CMOS electronics from the handle wafer which is used as a depleted charge collection layer. FD-SOI MAPS suffer from radiation damage such as transistor threshold voltage shifts due to charge traps in the oxide layers and charge states created at the silicon oxide boundaries (back gate effect). The X-FAB 180-nm HV-SOI technology offers an additional isolation by deep non-depleted implant between the BOX layer and the active circuitry witch mitigates this problem. Therefore we see in this technology a high potential to implement radiation-tolerant MAPS with fast charge collection property. The design and measurement results from a first prototype are presented including charge collection in neutron irradiated samples.
Monolithic active pixel sensors produced in High Voltage CMOS (HV-CMOS) technology are being considered for High Energy Physics applications due to the ease of production and the reduced costs. Such technology is especially appealing when large areas to be covered and material budget are concerned. This is the case of the outermost pixel layers of the future ATLAS tracking detector for the HL-LHC. For experiments at hadron colliders, radiation hardness is a key requirement which is not fulfilled by standard CMOS sensor designs that collect charge by diffusion. This issue has been addressed by depleted active pixel sensors in which electronics are embedded into a large deep implantation ensuring uniform charge collection by drift. Very first small prototypes of hybrid depleted active pixel sensors have already shown a radiation hardness compatible with the ATLAS requirements. Nevertheless, to compete with the present hybrid solutions a further reduction in costs achievable by a fully monolithic design is desirable. The H35DEMO is a large electrode full reticle demonstrator chip produced in AMS 350 nm HV-CMOS technology by the collaboration of Karlsruher Institut fur Technologie (KIT), Institut de Fisica dAltes Energies (IFAE), University of Liverpool and University of Geneva. It includes two large monolithic pixel matrices which can be operated standalone. One of these two matrices has been characterised at beam test before and after irradiation with protons and neutrons. Results demonstrated the feasibility of producing radiation hard large area fully monolithic pixel sensors in HV-CMOS technology. H35DEMO chips with a substrate resistivity of 200$Omega$ cm irradiated with neutrons showed a radiation hardness up to a fluence of $10^{15}$n$_{eq}$cm$^{-2}$ with a hit efficiency of about 99% and a noise occupancy lower than $10^{-6}$ hits in a LHC bunch crossing of 25ns at 150V.
The MuPix7 chip is a monolithic HV-CMOS pixel chip, thinned down to 50 mu m. It provides continuous self-triggered, non-shuttered readout at rates up to 30 Mhits/chip of 3x3 mm^2 active area and a pixel size of 103x80 mu m^2. The hit efficiency depends on the chosen working point. Settings with a power consumption of 300 mW/cm^2 allow for a hit efficiency >99.5%. A time resolution of 14.2 ns (Gaussian sigma) is achieved. Latest results from 2016 test beam campaigns are shown.
123 - M. Trimpl , M. Koch , R. Kohrs 2006
We have developed a prototype system for the ILC vertex detector based on DEPFET pixels. The system operates a 128x64 matrix (with ~35x25 square micron large pixels) and uses two dedicated microchips, the SWITCHER II chip for matrix steering and the CURO II chip for readout. The system development has been driven by the final ILC requirements which above all demand a detector thinned to 50 micron and a row wise read out with line rates of 20MHz and more. The targeted noise performance for the DEPFET technology is in the range of ENC=100 e-. The functionality of the system has been demonstrated using different radioactive sources in an energy range from 6 to 40keV. In recent test beam experiments using 6GeV electrons, a signal-to-noise ratio of S/N~120 has been achieved with present sensors being 450 micron thick. For improved DEPFET systems using 50 micron thin sensors in future, a signal-to-noise of 40 is expected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا