Do you want to publish a course? Click here

Strong pairing in mixed dimensional bilayer antiferromagnetic Mott insulators

279   0   0.0 ( 0 )
 Added by Annabelle Bohrdt
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Interacting many-body systems combining confined and extended dimensions, such as ladders and few layer systems are characterized by enhanced quantum fluctuations, which often result in interesting collective properties. Recently two-dimensional bilayer systems, such as twisted bilayer graphene or ultracold atoms, have sparked a lot of interest because they can host rich phase diagrams, including unconventional superconductivity. Here we present a theoretical proposal for realizing high temperature pairing of fermions in a class of bilayer Hubbard models. We introduce a general, highly efficient pairing mechanism for mobile dopants in antiferromagnetic Mott insulators, which leads to binding energies proportional to $t^{1/3}$, where $t$ is the hopping amplitude of the charge carriers. The pairing is caused by the energy that one charge gains when retracing a string of frustrated bonds created by another charge. Concretely, we show that this mechanism leads to the formation of highly mobile, but tightly bound pairs in the case of mixed-dimensional Fermi-Hubbard bilayer systems. This setting is closely related to the Fermi-Hubbard model believed to capture the physics of copper oxides, and can be realized by currently available ultracold atom experiments.



rate research

Read More

Employing the density-matrix renormalization group technique in the matrix-product-state representation, we investigate the photoexcited superconducting correlations induced by the $eta$-pairing mechanism in the half-filled Hubbard chain. We estimate the characteristic pair correlation function and verify the accuracy of our numerical results by comparison with exact-diagonalization data for small systems. The optimal parameter set of the pump that most enhances the $eta$-pair correlations, is calculated in the strong-coupling regime. For such a pump, we explore the possibility of quasi-long-range order.
We point out that fractionalized bosonic charge excitations can explain the recently discovered photo-induced superconducting-like response in $kappatext{-(ET})_2text{Cu}[text{N(CN)}_2]text{Br}$, an organic metal close to the Mott transition. The pump laser exerts a periodic drive on the fractionalized field, creating a non-equilibrium condensate, which gives a Drude peak much narrower than the equilibrium scattering rate, hence superconducting-like response. Our proposal illuminates new possibilities of detecting fractionalization and can be readily tested in spin liquid candidates and in cold atom systems.
100 - Gal Shavit , Erez Berg , Ady Stern 2021
We introduce and analyze a model that sheds light on the interplay between correlated insulating states, superconductivity, and flavor-symmetry breaking in magic angle twisted bilayer graphene. Using a variational mean-field theory, we determine the normal-state phase diagram of our model as a function of the band filling. The model features robust insulators at even integer fillings, occasional weaker insulators at odd integer fillings, and a pattern of flavor-symmetry breaking at non-integer fillings. Adding a phonon-mediated inter-valley retarded attractive interaction, we obtain strong-coupling superconducting domes, whose structure is in qualitative agreement with experiments. Our model elucidates how the intricate form of the interactions and the particle-hole asymmetry of the electronic structure determine the phase diagram. It also explains how subtle differences between devices may lead to the different behaviors observed experimentally. A similar model can be applied with minor modifications to other moir{e} systems, such as twisted trilayer graphene.
Twisted bilayer graphene exhibits a panoply of many-body phenomena that are intimately tied to the appearance of narrow and well isolated electronic bands near magic-angle. The microscopic ingredients that are responsible for the complex experimental phenomenology include electron-electron (phonon) interactions and non-trivial Bloch wavefunctions associated with the narrow bands. Inspired by recent experiments, we focus here on an interplay of two independent interaction-induced phenomena on superconductivity. We analyze the combined effects of Coulomb interaction driven band-flattening and phonon-mediated attraction due to the exchange of multiple electron-phonon umklapp processes, as a function of filling and twist angle. The former leads to a filling-dependent enhancement of the renormalized density of states, which contributes to a robust increase in the tendency towards pairing in a range of angles near magic-angle. In addition, the minimal spatial extent associated with the Wannier functions develops a non-trivial enhancement as a result of these many-body renormalizations, which can further contribute towards stabilizing the superconducting state over a wider range of fillings and twist-angles.
Mott insulators sometimes show dramatic changes in their electronic states after photoirradiation, as indicated by photoinduced Mott-insulator-to-metal transition. In the photoexcited states of Mott insulators, electron wavefunctions are more delocalized than in the ground state, and long-range Coulomb interactions play important roles in charge dynamics. However, their effects are difficult to discriminate experimentally. Here, we show that in a one-dimensional Mott insulator, bis(ethylenedithio)tetrathiafulvalene-difluorotetracyanoquinodimethane (ET-F2TCNQ), long-range Coulomb interactions stabilize not only excitons, doublon-holon bound states, but also biexcitons. By measuring terahertz-electric-field-induced reflectivity changes, we demonstrate that odd- and even-parity excitons are split off from a doublon-holon continuum. Further, spectral changes of reflectivity induced by a resonant excitation of the odd-parity exciton reveals that an exciton-biexciton transition appears just below the exciton-transition peak. Theoretical simulations show that long-range Coulomb interactions over four sites are necessary to stabilize the biexciton. Such information is indispensable for understanding the non-equilibrium dynamics of photoexcited Mott insulators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا