Do you want to publish a course? Click here

Biexciton in one-dimensional Mott insulators

87   0   0.0 ( 0 )
 Added by Tatsuya Miyamoto
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Mott insulators sometimes show dramatic changes in their electronic states after photoirradiation, as indicated by photoinduced Mott-insulator-to-metal transition. In the photoexcited states of Mott insulators, electron wavefunctions are more delocalized than in the ground state, and long-range Coulomb interactions play important roles in charge dynamics. However, their effects are difficult to discriminate experimentally. Here, we show that in a one-dimensional Mott insulator, bis(ethylenedithio)tetrathiafulvalene-difluorotetracyanoquinodimethane (ET-F2TCNQ), long-range Coulomb interactions stabilize not only excitons, doublon-holon bound states, but also biexcitons. By measuring terahertz-electric-field-induced reflectivity changes, we demonstrate that odd- and even-parity excitons are split off from a doublon-holon continuum. Further, spectral changes of reflectivity induced by a resonant excitation of the odd-parity exciton reveals that an exciton-biexciton transition appears just below the exciton-transition peak. Theoretical simulations show that long-range Coulomb interactions over four sites are necessary to stabilize the biexciton. Such information is indispensable for understanding the non-equilibrium dynamics of photoexcited Mott insulators.



rate research

Read More

We study interaction-induced Mott insulators, and their topological properties in a 1D non-Hermitian strongly-correlated spinful fermionic superlattice system with either nonreciprocal hopping or complex-valued interaction. For the nonreciprocal hopping case, the low-energy neutral excitation spectrum is sensitive to boundary conditions, which is a manifestation of the non-Hermitian skin effect. However, unlike the single-particle case, particle density of strongly correlated system does not suffer from the non-Hermitian skin effect due to the Pauli exclusion principle and repulsive interactions. Moreover, the anomalous boundary effect occurs due to the interplay of nonreciprocal hopping, superlattice potential, and strong correlations, where some in-gap modes, for both the neutral and charge excitation spectra, show no edge excitations defined via only the right eigenvectors. We show that these edge excitations of the in-gap states can be correctly characterized by only biorthogonal eigenvectors. Furthermore, the topological Mott phase, with gapless particle excitations around boundaries, exists even for the purely imaginary-valued interaction, where the continuous quantum Zeno effect leads to the effective on-site repulsion between two-component fermions.
Employing the density-matrix renormalization group technique in the matrix-product-state representation, we investigate the photoexcited superconducting correlations induced by the $eta$-pairing mechanism in the half-filled Hubbard chain. We estimate the characteristic pair correlation function and verify the accuracy of our numerical results by comparison with exact-diagonalization data for small systems. The optimal parameter set of the pump that most enhances the $eta$-pair correlations, is calculated in the strong-coupling regime. For such a pump, we explore the possibility of quasi-long-range order.
We study high-harmonic generation (HHG) in the one-dimensional Hubbard model in order to understand its relation to elementary excitations as well as the similarities and differences to semiconductors. The simulations are based on the infinite time-evolving block decimation (iTEBD) method and exact diagonalization. We clarify that the HHG originates from the doublon-holon recombination, and the scaling of the cutoff frequency is consistent with a linear dependence on the external field. We demonstrate that the subcycle features of the HHG can be reasonably described by a phenomenological three step model for a doublon-holon pair. We argue that the HHG in the one-dimensional Mott insulator is closely related to the dispersion of the doublon-holon pair with respect to its relative momentum, which is not necessarily captured by the single-particle spectrum due to the many-body nature of the elementary excitations. For the comparison to semiconductors, we introduce effective models obtained from the Schrieffer-Wolff transformation, i.e. a strong-coupling expansion, which allows us to disentangle the different processes involved in the Hubbard model: intraband dynamics of doublons and holons, interband dipole excitations, and spin exchanges. These demonstrate the formal similarity of the Mott system to the semiconductor models in the dipole gauge, and reveal that the spin dynamics, which does not directly affect the charge dynamics, can reduce the HHG intensity. We also show that the long-range component of the intraband dipole moment has a substantial effect on the HHG intensity, while the correlated hopping terms for the doublons and holons essentially determine the shape of the HHG spectrum. A new numerical method to evaluate single-particle spectra within the iTEBD method is also introduced.
292 - Zhihao Xu , Shu Chen 2020
We study the topological properties of Bose-Mott insulators in one-dimensional non-Hermitian superlattices, which may serve as effective Hamiltonians for cold atomic optical systems with either two-body loss or one-body loss. We find that in the strongly repulsive limit, the Mott insulator states of the Bose-Hubbard model with a finite two-body loss under integer fillings are topological insulators characterized by a finite charge gap, nonzero integer Chern numbers, and nontrivial edge modes in a low-energy excitation spectrum under an open boundary condition. The two-body loss suppressed by the strong repulsion results in a stable topological Bose-Mott insulator which has shares features similar to the Hermitian case. However, for the non-Hermitian model related to the one-body loss, we find the non-Hermitian topological Mott insulators are unstable with a finite imaginary excitation gap. Finally, we also discuss the stability of the Mott phase in the presence of two-body loss by solving the Lindblad master equation.
We study the nonequilibrium phase diagram of long-lived photo-doped states in the one-dimensional $U$-$V$ Hubbard model, where $eta$-pairing, spin density wave and charge density wave (CDW) phases are found. The photo-doped states are studied using an effective model obtained by a Schrieffer-Wolff transformation combined with separate chemical potentials for the approximately conserved pseudoparticle excitations, leading to a generalized Gibbs ensemble type description. These photo-doped states are characterized by gapless ($eta$-paring) and gapped (CDW) features in the nonequilibrium spectra. For small $V$, the $eta$-pairing correlations dominate over a wide doping range even when the SU$_c(2)$ symmetry that protects $eta$-pairing in the pure Hubbard model is absent. With increasing $V$, the CDW correlations take over in a wide doping range and are strong relative to the chemically doped case. We attribute the strong CDW correlations to the competition between intra- and inter-species repulsion and the one-dimensional configuration. Our results show that photo-doped strongly correlated systems exhibit different phases than conventional semiconductors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا