Do you want to publish a course? Click here

Photoinduced $eta$-pairing in One-dimensional Mott Insulators

143   0   0.0 ( 0 )
 Added by Satoshi Ejima
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Employing the density-matrix renormalization group technique in the matrix-product-state representation, we investigate the photoexcited superconducting correlations induced by the $eta$-pairing mechanism in the half-filled Hubbard chain. We estimate the characteristic pair correlation function and verify the accuracy of our numerical results by comparison with exact-diagonalization data for small systems. The optimal parameter set of the pump that most enhances the $eta$-pair correlations, is calculated in the strong-coupling regime. For such a pump, we explore the possibility of quasi-long-range order.



rate research

Read More

Mott insulators sometimes show dramatic changes in their electronic states after photoirradiation, as indicated by photoinduced Mott-insulator-to-metal transition. In the photoexcited states of Mott insulators, electron wavefunctions are more delocalized than in the ground state, and long-range Coulomb interactions play important roles in charge dynamics. However, their effects are difficult to discriminate experimentally. Here, we show that in a one-dimensional Mott insulator, bis(ethylenedithio)tetrathiafulvalene-difluorotetracyanoquinodimethane (ET-F2TCNQ), long-range Coulomb interactions stabilize not only excitons, doublon-holon bound states, but also biexcitons. By measuring terahertz-electric-field-induced reflectivity changes, we demonstrate that odd- and even-parity excitons are split off from a doublon-holon continuum. Further, spectral changes of reflectivity induced by a resonant excitation of the odd-parity exciton reveals that an exciton-biexciton transition appears just below the exciton-transition peak. Theoretical simulations show that long-range Coulomb interactions over four sites are necessary to stabilize the biexciton. Such information is indispensable for understanding the non-equilibrium dynamics of photoexcited Mott insulators.
Interacting many-body systems combining confined and extended dimensions, such as ladders and few layer systems are characterized by enhanced quantum fluctuations, which often result in interesting collective properties. Recently two-dimensional bilayer systems, such as twisted bilayer graphene or ultracold atoms, have sparked a lot of interest because they can host rich phase diagrams, including unconventional superconductivity. Here we present a theoretical proposal for realizing high temperature pairing of fermions in a class of bilayer Hubbard models. We introduce a general, highly efficient pairing mechanism for mobile dopants in antiferromagnetic Mott insulators, which leads to binding energies proportional to $t^{1/3}$, where $t$ is the hopping amplitude of the charge carriers. The pairing is caused by the energy that one charge gains when retracing a string of frustrated bonds created by another charge. Concretely, we show that this mechanism leads to the formation of highly mobile, but tightly bound pairs in the case of mixed-dimensional Fermi-Hubbard bilayer systems. This setting is closely related to the Fermi-Hubbard model believed to capture the physics of copper oxides, and can be realized by currently available ultracold atom experiments.
By employing unbiased numerical methods, we show that pulse irradiation can induce unconventional superconductivity even in the Mott insulator of the Hubbard model. The superconductivity found here in the photoexcited state is due to the $eta$-pairing mechanism, characterized by staggered pair-density-wave oscillations in the off-diagonal long-range correlation, and is absent in the ground-state phase diagram; i.e., it is induced neither by a change of the effective interaction of the Hubbard model nor by simple photocarrier doping. Because of the selection rule, we show that the nonlinear optical response is essential to increase the number of $eta$ pairs and thus enhance the superconducting correlation in the photoexcited state. Our finding demonstrates that nonequilibrium many-body dynamics is an alternative pathway to access a new exotic quantum state that is absent in the ground-state phase diagram and also provides an alternative mechanism for enhancing superconductivity.
We numerically prove photoinduced $eta$-pairing in a half-filled fermionic Hubbard chain at both zero and finite temperature. The result, obtained by combining the matrix-product-state based infinite time-evolving block decimation technique and the purification method, applies to the thermodynamic limit. Exciting the Mott insulator by a laser electric field docked on via the Peierls phase, we track the time-evolution of the correlated many-body system and determine the optimal parameter set for which the nonlocal part of the $eta$-pair correlation function becomes dominant during the laser pump at zero and low temperatures. These correlations vanish at higher temperatures and long times after pulse irradiation. In the high laser frequency strong Coulomb coupling regime we observe a remnant enhancement of the Brillouin-zone boundary pair-correlation function also at high temperatures, if the Hubbard interaction is about a multiple of the laser frequency, which can be attributed to an enhanced double occupancy in the virtual Floquet state.
The previous theoretical study has shown that pulse irradiation to the Mott insulating state in the Hubbard model can induce the enhancement of superconducting correlation due to the generation of $eta$ pairs. Here, we show that the same mechanism can be applied to the Kondo lattice model, an effective model for heavy electron systems, by demonstrating that the pulse irradiation indeed enhances the $eta$-pairing correlation. As in the case of the Hubbard model, the non-linear optical process is essential to increase the number of photoinduced $eta$ pairs and thus the enhancement of the superconducting correlation. We also find the diffusive behavior of the spin dynamics after the pulse irradiation, suggesting that the increase of the number of $eta$ pairs leads to the decoupling between the conduction band and the localized spins in the Kondo lattice model, which is inseparably related to the photodoping effect.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا