No Arabic abstract
Simultaneous localization and mapping (SLAM) during communication is emerging. This technology promises to provide information on propagation environments and transceivers location, thus creating several new services and applications for the Internet of Things and environment-aware communication. Using crowdsourcing data collected by multiple agents appears to be much potential for enhancing SLAM performance. However, the measurement uncertainties in practice and biased estimations from multiple agents may result in serious errors. This study develops a robust SLAM method with measurement plug-and-play and crowdsourcing mechanisms to address the above problems. First, we divide measurements into different categories according to their unknown biases and realize a measurement plug-and-play mechanism by extending the classic belief propagation (BP)-based SLAM method. The proposed mechanism can obtain the time-varying agent location, radio features, and corresponding measurement biases (such as clock bias, orientation bias, and received signal strength model parameters), with high accuracy and robustness in challenging scenarios without any prior information on anchors and agents. Next, we establish a probabilistic crowdsourcing-based SLAM mechanism, in which multiple agents cooperate to construct and refine the radio map in a decentralized manner. Our study presents the first BP-based crowdsourcing that resolves the double count and data reliability problems through the flexible application of probabilistic data association methods. Numerical results reveal that the crowdsourcing mechanism can further improve the accuracy of the mapping result, which, in turn, ensures the decimeter-level localization accuracy of each agent in a challenging propagation environment.
In practice, residual transceiver hardware impairments inevitably lead to distortion noise which causes the performance loss. In this paper, we study the robust transmission design for a reconfigurable intelligent surface (RIS)-aided secure communication system in the presence of transceiver hardware impairments. We aim for maximizing the secrecy rate while ensuring the transmit power constraint on the active beamforming at the base station and the unit-modulus constraint on the passive beamforming at the RIS. To address this problem, we adopt the alternate optimization method to iteratively optimize one set of variables while keeping the other set fixed. Specifically, the successive convex approximation (SCA) method is used to solve the active beamforming optimization subproblem, while the passive beamforming is obtained by using the semidefinite program (SDP) method. Numerical results illustrate that the proposed transmission design scheme is more robust to the hardware impairments than the conventional non-robust scheme that ignores the impact of the hardware impairments.
Current discussions on the sixth Generation (6G) of wireless communications are envisioning future networks as a unified communication, sensing, and computing platform that intelligently enables diverse services, ranging from immersive to mission critical applications. The recently conceived concept of the smart radio environment, enabled by Reconfigurable Intelligent Surfaces (RISs), contributes towards this intelligent networking trend, offering programmable propagation of information-bearing signals, which can be jointly optimized with transceiver operations. Typical RIS implementations include metasurfaces with nearly passive meta-atoms, allowing to solely reflect the incident wave in an externally controllable way. However, this purely reflective nature induces significant challenges in the RIS orchestration from the wireless network. For example, channel estimation, which is essential for coherent communications in RIS-empowered wireless networks, is quite challenging with the available RIS designs. This article introduces the concept of Hybrid reflecting and sensing RISs (HRISs), which enables metasurfaces to reflect the impinging signal in a controllable manner, while simultaneously sense a portion of it. The sensing capability of HRISs facilitates various network management functionalities, including channel estimation and localization. We discuss a hardware design for HRISs and detail a full-wave proof-of-concept. We highlight their distinctive properties in comparison to reflective RISs and active relays, and present a simulation study evaluating the HRIS capability for performing channel estimation. Future research challenges and opportunities arising from the concept of HRISs are presented.
In this paper, a novel intelligent reflecting surface (IRS)-assisted wireless powered communication network (WPCN) architecture is proposed for low-power Internet-of-Things (IoT) devices, where the IRS is exploited to improve the performance of WPCN under imperfect channel state information (CSI). We formulate a hybrid access point (HAP) transmission energy minimization problem by a joint design of time allocation, HAP energy beamforming, receiving beamforming, user transmit power allocation, IRS energy reflection coefficient and information reflection coefficient under the imperfect CSI and non-linear energy harvesting model. Due to the high coupling of optimization variables, this problem is a non-convex optimization problem, which is difficult to solve directly. In order to solve the above-mentioned challenging problems, the alternating optimization (AO) is applied to decouple the optimization variables to solve the problem. Specifically, through AO, time allocation, HAP energy beamforming, receiving beamforming, user transmit power allocation, IRS energy reflection coefficient and information reflection coefficient are divided into three sub-problems to be solved alternately. The difference-of-convex (DC) programming is applied to solve the non-convex rank-one constraint in solving the IRS energy reflection coefficient and information reflection coefficient. Numerical simulations verify the effectiveness of our proposed algorithm in reducing HAP transmission energy compared to other benchmarks.
In this paper, we study the spectral efficiency (SE) and energy efficiency (EE) of asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) for visible light communication (VLC). Firstly, we derive the achiev-able rates for Gaussian distributions inputs and practical finite-alphabet inputs. Then, we investigate the SE maximization problems subject to both the total transmit power constraint and the average optical power constraint with the above two inputs, respectively. By exploiting the relationship between the mutual information and the minimum mean-squared error, an optimal power allocation scheme is proposed to maximize the SE with finite-alphabet inputs. To reduce the computational complexity of the power allocation scheme, we derive a closed-form lower bound of the SE. Also, considering the quality of service, we further tackle the non-convex EE maximization problems of ACO-OFDM with the two inputs, respectively. The problems are solved by the proposed Dinkelbach-type iterative algorithm. In each iteration, the interior point algorithm is applied to obtain the optimal power allocation.The performance of the proposed power allocation schemes for the SE and EE maximization are validated through numerical analysis.
The design of biologically-inspired wireless communication systems using bacteria as the basic element of the system is initially motivated by a phenomenon called emph{Quorum Sensing}. Due to high randomness in the individual behavior of a bacterium, reliable communication between two bacteria is almost impossible. Therefore, we have recently proposed that a population of bacteria in a cluster is considered as a bio node in the network capable of molecular transmission and reception. This proposition enables us to form a reliable bio node out of many unreliable bacteria. In this paper, we study the communication between two nodes in such a network where information is encoded in the concentration of molecules by the transmitter. The molecules produced by the bacteria in the transmitter node propagate through the diffusion channel. Then, the concentration of molecules is sensed by the bacteria population in the receiver node which would decode the information and output light or fluorescent as a result. The uncertainty in the communication is caused by all three components of communication, i.e., transmission, propagation and reception. We study the theoretical limits of the information transfer rate in the presence of such uncertainties. Finally, we consider M-ary signaling schemes and study their achievable rates and corresponding error probabilities.